Homework 9

Math 123

Due April 2, 2021 by 5pm

Name:

Topics covered: planar graphs, Kuratowski's theorem, convex embeddings, Tutte's theorem Instructions:

- This assignment must be submitted on Gradescope by the due date.
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- Some problems from this assignment come from West's book, as indicated next to the problem. In some cases, the statements on this assignment differ slightly from the book.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.
- You may freely use any fact proved in class. In general, you should provide proof for facts used that were not proved in class.

Problem 1. Prove that $K_{3,3}$ is not planar by an argument similar to the one we gave in class for $K_{5} .{ }^{1}$

Solution.

Problem 2 (West 6.1.20). Prove that a planar graph G is bipartite if and only if every region of $\mathbb{R}^{2} \backslash G$ has an even number of sides. (Note: the boundary of a region does not necessarily correspond to a cycle in the graph. $)^{2}$

Solution.

Problem 3 (West 6.1.29). Prove that the complement of a planar graph with at least 11 vertices is nonplanar. ${ }^{3}$ Give an example of a planar graph with 8 vertices whose complement is also planar. ${ }^{4}$

Solution

Problem 4 (West 6.1.31). Let G_{n} be the graph with vertices v_{1}, \ldots, v_{n} and an edge between v_{i} and v_{j} whenever $|i-j| \leq 3$. Prove that G_{n} is a maximal planar graph. ${ }^{5}$

Solution.

Problem 5. Let $G \subset \mathbb{R}^{2}$ be a plane graph, and let $C \subset G$ be a cycle. Assume that G is 3 -connected. Prove that C is the boundary of a region of $\mathbb{R}^{2} \backslash G$ if and only if G has exactly one C-fragment. ${ }^{6}$

Solution.

Problem 6 (West 6.2.4). For each graph below, if the graph is planar, give a convex embedding, and if the graph is non-planar give two proofs: one using Kuratowski's theorem and one using the conflict graph.

Solution.

[^0]Problem 7 (Bonus). Give an intelligent ${ }^{7}$ solution to the magic square puzzle posted by Cole in Piazza post @93.

Solution.

[^1]
[^0]: ${ }^{1}$ Hint: What is the smallest length of a closed walk/cycle in $K_{3,3}$?
 ${ }^{2}$ Hint: for one direction, use induction on the number of regions of $\mathbb{R}^{2} \backslash G$.
 ${ }^{3}$ Hint: your solution should be very short.
 ${ }^{4}$ Hint: in fact you can find one that is self-complementary. This should simplify your search.
 ${ }^{5}$ Hint: you can do this by induction. Note that there are two things to show: maximal and planar.
 ${ }^{6}$ Remark: to better understand this problem, it might help to construct an example of a graph G with a cycle $C \subset G$ and a planar embedding $G \subset \mathbb{R}^{2}$ so that C is not the boundary of a region.

[^1]: ${ }^{7}$ i.e. using math, not by brute force

