# Homework 7 

Math 123

Due March 19, 2021 by 5pm

## Name:

Topics covered: Graph coloring, Mycielski construction, Brooks' theorem
Instructions:

- This assignment must be submitted on Gradescope by the due date.
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- Some problems from this assignment come from West's book, as indicated next to the problem. In some cases, the statements on this assignment differ slightly from the book.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.
- You may freely use any fact proved in class. In general, you should provide proof for facts used that were not proved in class.


## Problem 1.

(a) Identify the graph on the course webpage and explain what is special about it.
(b) Let $G=K_{n_{1}, \ldots, n_{r}}$ be a complete r-partite graph with $n=n_{1}+\cdots+n_{r}$ vertices. Show that if $n_{i}-n_{j} \geq 2$ for some $i, j$, then there exists an r-partite graph with $n$ vertices and more edges than $G$.

## Solution.

Problem 2 (West 5.1.19). Find the error in the following incorrect proof of Brooks' Theorem: If $G \neq C_{2 k+1}$ and $G \neq K_{n}$, then $\chi(G) \leq \Delta(G)$. A complete solution requires not only pointing out the error, but also explaining why it's wrong (with an example).

We induct on the number of vertices $n$. The statement holds for $n=1$, trivially. For the induction step, suppose that $G$ is not complete or an odd cycle. Since $\kappa(G) \leq \delta(G)$ (where $\kappa$ is the vertex connectivity and $\delta$ is the minimal vertex degree), the graph $G$ has a vertex cut $S$ of size at most $\Delta(G)$. Let $G_{1}, \ldots, G_{m}$ be the components of $G \backslash S$, and let $H_{i} \subset G$ be the subgraph generated by $V\left(G_{i}\right) \cup S$. By the induction hypothesis, each $H_{i}$ is $\Delta(G)$-colorable. Permute the names of the colors used on these subgraphs to agree on $S$. This yields a coloring of $G$ with $\Delta(G)$ colors.

Note that this argument is similar to the argument we used to show a critical graph doesn't have a cut vertex.

## Solution.

Problem 3 (West 5.1.22). Given a set of lines in the plane with no three meeting at a point, form a graph $G$ whose vertices are the intersections of the lines, with two vertices adjacent if they appear consecutively on one of the lines. Prove that $\chi(G) \leq 3$. ${ }^{1} 2$

## Solution.

Problem 4 (West 5.1.33). Prove that every graph $G$ has a vertex ordering relative to which the greedy coloring uses $\chi(G)$ colors.

## Solution.

Problem 5 (West 5.2.9). For a graph $G$, let $G^{\prime}$ be the graph obtained by the Mycielski construction. Show that if $G$ is critical, then $G^{\prime}$ is also critical. ${ }^{3} 4$

Solution.

[^0]Problem 6 (West 5.1.38). Prove that $\chi(G)=\omega(G)$ when the complement $\bar{G}$ is bipartite. ${ }^{5} 6$
Solution.
Problem 7 (Bonus). Let $G=(V, E)$ be the unit distance graph in the plane: $V=\mathbb{R}^{2}$, and two points are adjacent if their Euclidean distance is 1 . Prove that $4 \leq \chi(G) \leq 7$.

Solution.

[^1]
[^0]:    ${ }^{1}$ If you are unsure of exactly how this graph works, see the problem statement in West for an example.
    ${ }^{2}$ Hint: use a greedy coloring with an appropriate vertex ordering.
    ${ }^{3}$ Hint: once you figure this out for the Grötzsch graph, you can probably quickly detail the general case.
    ${ }^{4}$ Show $\chi\left(G^{\prime} \backslash e\right)<\chi\left(G^{\prime}\right)$ by cases. The trickiest case is $e=\left\{v_{i}, u_{j}\right\}$. One way to approach this is to start by coloring $H^{\prime}$ with $H \subset G \backslash e^{\prime}$, where $e^{\prime}=\left\{v_{i}, v_{j}\right\} \ldots$

[^1]:    ${ }^{5}$ Recall that $\omega(G)$ is the clique number.
    ${ }^{6}$ Hint: look to apply König's theorem (!)

