Homework 5

Math 123

Due March 5, 2021 by 5pm

Name:

Topics covered: matchings, König's theorem, vertex covers, Gale-Shapely algorithm Instructions:

- This assignment must be submitted on Gradescope by the due date.
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- Some problems from this assignment come from West's book, as indicated next to the problem. In some cases, the statements on this assignment differ slightly from the book.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.
- You may freely use any fact proved in class. In general, you should provide proof for facts used that were not proved in class.

Problem 1 (West 3.1.1). Find a maximum matching in each graph below. Prove that it is a maximum matching by exhibiting an optimal solution to the dual problem. Explain why this proves that the matching is optimal.

Solution.

Problem 2 (West 3.1.29). Let $G=(V, E)$ be a bipartite graph with maximum vertex degree Δ.
(a) Use König's theorem to prove that G has a matching of size at least $|E| / \Delta$.
(b) Use (a) to conclude that every subgraph of $K_{n, n}$ with more than $(k-1) n$ edges has a matching of size at least k.

Solution.

Problem 3. Use König's theorem to prove the more difficult direction of Hall's theorem: if $G=$ $(X \sqcup Y, E)$ does not have a matching saturating X, then there exists $S \subset X$ so that $|S|>|N(S)|$.

Solution.

Problem 4 (West 3.2.3). Give an example of a stable matching problem of a graph $G=(X \sqcup Y, E)$ with $|X|=|Y|=2$ in which there is more than one stable matching.

Solution.

Problem 5 (West 3.2.4). Determine the stable matchings resulting from the proposal algorithm run with cats proposing and with giraffes proposing, given the preference lists below.

$$
\begin{array}{cl}
\text { Cats }\{u, v, w, x, y, z\} & \text { Giraffes }\{a, b, c, d, e, f\} \\
u: a>b>d>c>f>e & a: z>x>y>u>v>w \\
v: a>b>c>f>e>d & b: y>z>w>x>v>u \\
w: c>b>d>a>f>e & c: v>x>w>y>u>z \\
x: c>a>d>b>e>f & d: w>y>u>x>z>v \\
y: c>d>a>b>f>e & e: u>v>x>w>y>z \\
z: d>e>f>c>b>a & f: u>w>x>v>z>y
\end{array}
$$

Solution.

[^0]Problem 6. Let $G=(X \sqcup Y, E)$ be a bipartite graph with a preference list. Let M_{X} be the matching obtained from applying the Gale-Shapely algorithm with vertices in X proposing. Let M be any other stable matching of G. Prove that for each $y \in Y$, if $\{x, y\} \in M_{X}$ and $\left\{x^{\prime}, y\right\} \in M$, then either $x=x^{\prime}$ or y prefers x^{\prime} to x. In other words, each $y \in Y$ gets the worst possible matching from the proposal algorithm.

Solution.
Problem 7 (Bonus). Let T_{1} be the tiling of the plane by unit squares whose vertices have integer coordinates. Let T_{2} be the result of rotating T_{1} about the origin by some angle θ. Prove that it is possible to find a bijection between squares of T_{1} and squares of T_{2} in such a way that the matched squares are within 10 units of each other. The matching will depend on $\theta .{ }^{2}$

Solution.

[^1]
[^0]: ${ }^{1}$ Hint: Prove the given statement (not its contrapositive). Consider a minimal vertex cover Q. What can you say about the size $Q \cap X$ vs. X ? Find a set $S \subset X$ so that $|S|>|N(S)|$. The proof should be relatively short.

[^1]: ${ }^{2}$ Hint: try to make this look like Hall's matching problem.

