Homework 3

Math 123

Due February 12, 2021 by 5pm

Name:

Topics covered: trees, Prüfer codes, spanning trees, counting graphs
Instructions:

- This assignment must be submitted on Gradescope by the due date.
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- Some problems from this assignment come from West's book, as indicated next to the problem. In some cases, the statements on this assignment differ slightly from the book.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.
- You may freely use any fact proved in class. In general, you should provide proof for facts used that were not proved in class.

Problem 1 (West 1.2.12). Prove or disprove: if G is Eulerian with edges e, f that share a vertex, then G has an Euler tour where e, f appear consecutively.

Solution.

Problem 2 (West 2.2.1). Determine which trees have Prüfer codes that
(a) contain only one value;
(b) contain exactly two values;
(c) have distinct values.

You should explain your answer, but you don't need to give careful proof.

Solution.

Problem 3 (West 2.1.72). Prove that if T_{1}, \ldots, T_{k} are pairwise-intersecting subtrees of a tree T, then T has a vertex that belongs to all of T_{1}, \ldots, T_{k}. ${ }^{12}$

Solution.
Problem 4 (West 1.2.17). Let G_{n} be the graph whose vertices are orderings of the elements of $\{1, \ldots, n\}$ with $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ adjacent if they differ by switching a pair of adjacent entries. ${ }^{3}$
(a) The graph G_{3} is isomorphic to a familiar graph. Which one is it?
(b) Show that G_{n} is connected. ${ }^{4}$

Solution.

Problem 5 (West 2.2.7). Use Cayley's formula to prove that the graph obtained from K_{n} by deleting an edge has $(n-2) n^{n-3}$ spanning trees.

Solution.
Problem 6 (West 1.3.32). Prove that the number of even graphs (i.e. graphs where every vertex has even degree) with vertex set $\{1, \ldots, n\}$ is $2\binom{n-1}{2} .{ }^{5}$

Solution.
Problem 7 (Bonus). Consider the graph with vertices and edges pictured below. Show it is impossible to draw a line (without picking up your pen) that crosses each edge exactly once.

[^0]

Solution.

[^0]: ${ }^{1}$ Remark: This is a graph-theoretic analog of Helly's theorem.
 ${ }^{2}$ Hint: use induction on k.
 ${ }^{3}$ Note: Here the sequence $\left(a_{1}, \ldots, a_{n}\right)$ does not have repetition. Each element of $\{1, \ldots, n\}$ appears exactly once.
 ${ }^{4}$ Tangential remark: here you are proving that a certain collection of permutations generate the symmetric group.
 ${ }^{5}$ Hint: establish a bijection to the set of all graphs with vertex set $\{1, \ldots, n-1\}$.

