Homework 2

Math 123

Due February 5, 2021 by 5pm

Name:

Topics covered: bipartite graphs, Euler tours, vertex-degree sum formula, trees Instructions:

- This assignment must be submitted on Gradescope by the due date.
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- Some problems from this assignment come from West's book, as indicated next to the problem. In some cases, the statements on this assignment differ slightly from the book.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.
- You may freely use any fact proved in class. In general, you should provide proof for facts used that were not proved in class.

Problem 1 (West 1.2.8). The complete bipartite graph $K_{n,m}$ is the graph with n + m vertices v_1, \ldots, v_n and u_1, \ldots, u_m and edges $\{v_i, u_j\}$ for each $1 \le i \le n$ and $1 \le j \le m$. Determine the values n, m so that $K_{n,m}$ is Eulerian.

Solution.

Problem 2 (West 1.2.10). Prove or disprove:

- (a) Every Eulerian bipartite graph has an even number of edges.
- (b) Every Eulerian graph with an even number of vertices has an even number of edges.

Solution.

Problem 3.

- (a) Classify trees with exactly two vertices of degree 1. 1
- (b) What can you say about the shape of trees with either 3 or 4 vertices of degree 1? (Give a qualitative statement you do not need to provide a formal argument.)

Solution.

Problem 4 (West 1.1.17). Determine the number of graphs with 7-vertices, each of degree 4 (up to isomorphism). 2

Solution.

Problem 5 (West 1.1.14).

- (a) Prove that removing opposite corner squares from an 8×8 checkerboard leaves a sub-board that cannot be partitioned into 1×2 and 2×1 rectangles.³
- (b) Using the same argument, make a general statement about all bipartite graphs.⁴

Solution.

Problem 6 (West 1.3.13). Suppose there are two mountain trails, each starting at sea level and ending at the same elevation. Suppose hikers A, B start hiking these two different trails at the same time. The Mountain Climber Problem asks if it is possible for A and B to hike to the top of their individual trails in a way so that they have the same elevation at every time.⁵ We model the trails by functions $f, g : [0,1] \rightarrow [0,1]$ with f(0) = g(0) = 0 and f(1) = g(1) = 1. In this problem you solve the Mountain Climber Problem in the case when f and g are piecewise linear continuous functions.⁶

2

¹At some point, you should use the vertex-degree sum formula from Lecture 1.

^{2}Hint: consider the complement. Your solution should not be long. Use the previous problem.

³Hint: your solution should be very short.

⁴This problem is not particularly deep. The point here is to see how to translate to bipartite graphs. If you get stuck look up "matching" in a (bipartite) graph.

⁵It is important to note that the hikers are allowed to backtrack.

⁶A function $f : [0,1] \to \mathbb{R}$ is piecewise linear if it's possible to express [0,1] as a union of finitely many intervals, so that f is linear $(x \mapsto ax + b)$ on each.

(a) Consider

$$Z = \{(x, y) \in [0, 1] \times [0, 1] : f(x) = g(y)\}$$

Assuming f, g are piecewise linear, determine the local picture near (x, y) in Z, considering cases based on the local pictures of f and g near x and y, respectively.

(b) Observe that Z can be given the structure of a graph G. Show that G has exactly two vertices of odd degree. Deduce that there is a path in G from (0,0) to (1,1).

Solution.