Homework 1

${\rm Math}~123$

Due January 29, 2021 by 5pm

Name:

Topics covered: graph/subgraph, cycle, path, vertex degrees, isomorphism Instructions:

- This assignment must be submitted on Gradescope by the due date. Gradescope Entry Code:WYB7BK.
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- Some problems from this assignment come from West's book, as indicated next to the problem. In some cases, the statements on this assignment differ slightly from the book.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.

Problem 1 (West 1.1.24). Prove that the graph below is isomorphic to the Petersen graph.¹

Solution.

Problem 2 (West 1.3.20). How many cycles of length n are there in the complete graph K_n ?

Solution.

Problem 3 (West 1.3.24). Define the hypercube graph Q_k as the graph with a vertex for each tuple (a_1,\ldots,a_k) with coordinates $a_i \in \{0,1\}$ and with an edge between (a_1,\ldots,a_k) and (b_1,\ldots,b_k) if they differ in exactly one coordinate.²

- (a) Prove that two 4-cycles in Q_k are either disjoint, intersect in a single vertex, or intersect in a single edge.
- (b) Let $K_{2,3}$ be the complete bipartite graph with 2 red and 3 blue vertices. Prove that $K_{2,3}$ is not a subgraph of any hypercube Q_k .

Solution.

Problem 4 (West 1.1.31). Let G = (V, E) be a graph. The complement of G is the graph $\overline{G} =$ (V, \overline{E}) , where $\{u, v\} \in \overline{E}$ if and only if $\{u, v\} \notin E$.

- (a) Determine the complement of the graphs P_3 and P_4 . (Recall that P_n is the path with n vertices.)
- (b) We say that G is self-complementary if G is isomorphic G. Prove that if G is self-complementary with n vertices, then either n is divisible by 4 or n-1 is divisible by 4.
- (c) Prove that if either n or n-1 is divisible by 4, then there exists a self-complementary graph with n vertices. You do not need to write a careful proof that these graphs are selfcomplementary, but you should convince yourself of this.³

Solution.

Problem 5. True or false: if G is isomorphic to H, then the complements \overline{G} and \overline{H} are also isomorphic.⁴

¹Hint: label the graph.

²Suggestion: Draw Q_k for k=2 and k=3. This should help explain why the graph is called the hypercube.

³Hint: when n = 4k, start with k copies of P_4 . It may help to start by carefully considering the case n = 8. When n = 4k + 1, start by adding one vertex to the graph constructed for n = 4k. Again, start with the case n = 5.

 $^{{}^{4}}$ True/false questions require either a proof (if the statement is true) or a counterexample (if the statement is false).

Solution.

Problem 6 (West 1.1.25). For this problem, let G denote the Petersen graph.

- (a) Prove that G has no cycles of length 3 or 4. 5
- (b) Prove that G has no cycle of length 7. 6

Solution.

 $\mathbf{3}$

 $^{^5\}mathrm{Hint:}$ use the definition of Petersen graph given in class.

⁶Hint: argue by contradiction. Here are some useful things to consider. Every vertex of G has degree 3, so each vertex on a 7-cycle C has one edge not on C. Can such an edge connect two different vertices on C? How many vertices of G are not part of C? How many total edges are in G? Use part (a) several times.