Homework 1

Math 123

Due January 29, 2021 by 5pm

Name:

Topics covered: graph/subgraph, cycle, path, vertex degrees, isomorphism
Instructions:

- This assignment must be submitted on Gradescope by the due date. Gradescope Entry Code:WYB7BK.
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- Some problems from this assignment come from West's book, as indicated next to the problem. In some cases, the statements on this assignment differ slightly from the book.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.

Problem 1 (West 1.1.24). Prove that the graph below is isomorphic to the Petersen graph. ${ }^{1}$

Solution.
Problem 2 (West 1.3.20). How many cycles of length n are there in the complete graph K_{n} ?

Solution.

Problem 3 (West 1.3.24). Define the hypercube graph Q_{k} as the graph with a vertex for each tuple $\left(a_{1}, \ldots, a_{k}\right)$ with coordinates $a_{i} \in\{0,1\}$ and with an edge between $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(b_{1}, \ldots, b_{k}\right)$ if they differ in exactly one coordinate. ${ }^{2}$
(a) Prove that two 4-cycles in Q_{k} are either disjoint, intersect in a single vertex, or intersect in a single edge.
(b) Let $K_{2,3}$ be the complete bipartite graph with 2 red and 3 blue vertices. Prove that $K_{2,3}$ is not a subgraph of any hypercube Q_{k}.

Solution.

Problem 4 (West 1.1.31). Let $G=(V, E)$ be a graph. The complement of G is the graph $\bar{G}=$ (V, \bar{E}), where $\{u, v\} \in \bar{E}$ if and only if $\{u, v\} \notin E$.
(a) Determine the complement of the graphs P_{3} and P_{4}. (Recall that P_{n} is the path with n vertices.)
(b) We say that G is self-complementary if G is isomorphic \bar{G}. Prove that if G is self-complementary with n vertices, then either n is divisible by 4 or $n-1$ is divisible by 4 .
(c) Prove that if either n or $n-1$ is divisible by 4, then there exists a self-complementary graph with n vertices. You do not need to write a careful proof that these graphs are selfcomplementary, but you should convince yourself of this. ${ }^{3}$

Solution.

Problem 5. True or false: if G is isomorphic to H, then the complements \bar{G} and \bar{H} are also isomorphic. ${ }^{4}$

[^0]
Solution.

Problem 6 (West 1.1.25). For this problem, let G denote the Petersen graph.
(a) Prove that G has no cycles of length 3 or $4 .{ }^{5}$
(b) Prove that G has no cycle of length 7. ${ }^{6}$

Solution.

[^1]
[^0]: ${ }^{1}$ Hint: label the graph.
 ${ }^{2}$ Suggestion: Draw Q_{k} for $k=2$ and $k=3$. This should help explain why the graph is called the hypercube.
 ${ }^{3}$ Hint: when $n=4 k$, start with k copies of P_{4}. It may help to start by carefully considering the case $n=8$. When $n=4 k+1$, start by adding one vertex to the graph constructed for $n=4 k$. Again, start with the case $n=5$.
 ${ }^{4}$ True/false questions require either a proof (if the statement is true) or a counterexample (if the statement is false).

[^1]: ${ }^{5}$ Hint: use the definition of Petersen graph given in class.
 ${ }^{6}$ Hint: argue by contradiction. Here are some useful things to consider. Every vertex of G has degree 3 , so each vertex on a 7 -cycle C has one edge not on C. Can such an edge connect two different vertices on C ? How many vertices of G are not part of C ? How many total edges are in G ? Use part (a) several times.

