Homework 3

Math 242

Due March 20, 2020 by 5pm

Topics covered: Hurewicz theorem, cohomology, Hom functor, Ext groups, cobordism Instructions:

- This assignment must be submitted on Canvas by the due date.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from Hatcher or Bredon, as indicated next to the problem. Note that the statements on this assignment might differ slightly from the books.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.

Problem 1. Compute $\pi_2(\mathbb{R}P^2 \vee \mathbb{R}P^2)$.

Solution.

Problem 2. Let M be an abelian group. Show that $\operatorname{Hom}(-, M)$ preserves split short exact sequences of abelian groups, i.e. if $0 \to A \xrightarrow{i} B \xrightarrow{p} C \to 0$ is a split short exact sequence, then

$$0 \to \operatorname{Hom}(C,M) \xrightarrow{p^*} \operatorname{Hom}(B,M) \xrightarrow{\iota^*} \operatorname{Hom}(A,M) \to 0$$

is also a split short exact sequence.

Solution.

Problem 3. Compute $\operatorname{Ext}^{k}(\mathbb{Z},\mathbb{Z})$ with the free resolution defined in class

$$\cdots \to \mathbb{Z}^2 \to \mathbb{Z}^2 \to \mathbb{Z}^2 \to \mathbb{Z} \to 0.$$

Solution.

Problem 4. True or false: the functors $h_k(X, A) = \text{Hom}(H_k(X, A), \mathbb{Z})$ do not define a (co)homology theory on the category of pairs of spaces.¹

Solution.

Problem 5. Let (X, x_0) be a connected cell complex. Show that every homomorphism $\phi : \pi_1(X, x_0) \to \mathbb{Z}$ is induced by a map $f : (X, x_0) \to (S^1, s_0)$ that is unique up to homotopy fixing x_0 .²

Solution.

Problem 6 (Hatcher 3.1.13). Let X be a cell complex, and recall $[X, S^1]$ denotes the set of homotopy classes of based maps $(X, x_0) \to (S^1, s_0)$. Prove the map $[X, S^1] \to H^1(X; \mathbb{Z}) \cong \text{Hom}(H_1(X), \mathbb{Z})$ defined by sending $[f] \mapsto f_*$ is a bijection (group isomorphism).

Solution.

Problem 7.³

- (a) Prove that every oriented surface bounds a 3-manifold.
- (b) Prove that if a surface M is a fiber bundle $M \to S^1$ with fiber S^1 , then M bounds a 3-manifold. Which surfaces does this apply to?
- (c) Prove that if if M, N are surfaces that differ by a surgery, then M, N are cobordant.⁴

¹Hint: this problem may be harder than it seems. Be rigorous!

 $^{^{2}}$ This problem may be a bit painful to write down precisely. I'm most interested to see that you have the main ideas.

³This problem could be hard. Please ask for help.

⁴Surgery on surfaces is the process of removing $S^1 \times D^1$ and replacing it with $D^2 \times S^0$ (or the inverse of this). Ask me, or see page 5 of Ranicki's Algebraic and geometric surgery.

(d) Prove that RP² does not bound a 3-manifold. Hint: Proceed by contradiction, and construct a closed 3-manifold whose Euler characteristic is odd; now look up the statement of Poincaré duality.

Solution.

Problem 8. Prove that the cobordism group	of 2-dimensiona	al manifolds is isomory	phic to $\mathbb{Z}/2\mathbb{Z}$. ⁵
---	-----------------	-------------------------	---

Solution.

⁵Recall from the classification of surfaces that any surface is either S^2 , a connected sum of tori $T^2 \# \cdots \# T^2$, or a connected sum $\mathbb{R}P^2 \# \cdots \# \mathbb{R}P^2$. How does the Klein bottle fit into this classification?