Homework 2

Math 242

Due February 14, 2020 by 5pm

Topics covered: H-groups, homotopy groups, fibrations, LES of a fibration
Instructions:

- This assignment must be submitted on Canvas by the due date.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from Hatcher or Bredon, as indicated next to the problem. Note that the statements on this assignment might differ slightly from the books.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.

Problem 1. Finish the proof of the H-group theorem. Show that the multiplication μ defined by $[\mu]=\left[p_{1}\right] \cdot\left[p_{2}\right] \in[Y \times Y, Y]$ is associative up to homotopy and has inverses up to homotopy.

Solution.

Problem 2. Prove that there is no multiplication on \mathbb{R}^{3} that makes it into a field. ${ }^{12}$
Solution.

Problem 3.

(a) True or false: if $p: E \rightarrow B$ is a fibration, then p is surjective.
(b) Give an example of a surjective map $q: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that is not a fibration.

Solution.

Problem 4. Let $\left(B, b_{0}\right)$ be any based space. Let $P B=\left(B, b_{0}\right)^{(I, 0)}$ denote the path space. Show that the map $p: P B \rightarrow B$ given by evaluation $p(f)=f(1)$ is a fibration. Do this by solving the lifting problem explicitly. ${ }^{3}$

Solution.

Problem 5. Show that the evaluation map $p: \mathrm{SO}(n+1) \rightarrow S^{n}$ defined by $A \mapsto A e_{n+1}$ has local sections. ${ }^{4}$

Solution.

Problem 6. Compute all the homotopy groups of $\mathbb{R} P^{\infty}$ and $\mathbb{C} P^{\infty}=\bigcup \mathbb{C} P^{n}$.

Solution.

Problem 7. Recall that the special unitary group is defined as $\operatorname{SU}(n)=\left\{A \in \mathrm{GL}_{n}(\mathbb{C}): A^{*} A=I\right\}$, where A^{*} denotes conjugate transpose.
(a) Prove that $A \in \mathrm{SU}(2)$ can be expressed as

$$
A=\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)
$$

where $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^{2}+|\beta|^{2}=1$. Use this to prove that $\mathrm{SU}(2)$ is homeomorphic to S^{3}.
(b) Prove that there is a 2 -fold cover $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$.
(c) Compute $\pi_{2}(\mathrm{SO}(n))$ for $n \geq 3$

[^0]Solution.
Problem 8 (Bonus). In the spirit of the assignment's due date, write a topology poem.
Solution.

[^0]: ${ }^{1}$ Hint: construct a nowhere vanishing vector field on S^{2}.
 ${ }^{2}$ Further hint: try fixing $u \in \mathbb{R}^{3}$ and defining vector field $F(x)=u x$. This won't quite work - how can you fix it?
 ${ }^{3}$ There is a general (non-explicit) argument given in Bredon VII. 6 using the homotopy extension property, but I'd like you to give a direct argument.
 ${ }^{4}$ Suggestion: do the case $n=2$ in a way that will generalize to arbitrary n.

