Homework 2

Math 242

Due February 14, 2020 by 5pm

Topics covered: H-groups, homotopy groups, fibrations, LES of a fibration Instructions:

- This assignment must be submitted on Canvas by the due date.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from Hatcher or Bredon, as indicated next to the problem. Note that the statements on this assignment might differ slightly from the books.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.

Problem 1. Finish the proof of the H-group theorem. Show that the multiplication μ defined by $[\mu] = [p_1] \cdot [p_2] \in [Y \times Y, Y]$ is associative up to homotopy and has inverses up to homotopy.

Solution.

Problem 2. Prove that there is no multiplication on \mathbb{R}^3 that makes it into a field.¹²

Solution.

Problem 3.

- (a) True or false: if $p: E \to B$ is a fibration, then p is surjective.
- (b) Give an example of a surjective map $q: \mathbb{R}^2 \to \mathbb{R}^2$ that is not a fibration.

Solution.

Problem 4. Let (B, b_0) be any based space. Let $PB = (B, b_0)^{(I,0)}$ denote the path space. Show that the map $p : PB \to B$ given by evaluation p(f) = f(1) is a fibration. Do this by solving the lifting problem explicitly.³

Solution.

Problem 5. Show that the evaluation map $p : SO(n+1) \to S^n$ defined by $A \mapsto Ae_{n+1}$ has local sections.⁴

Solution.

Problem 6. Compute all the homotopy groups of $\mathbb{R}P^{\infty}$ and $\mathbb{C}P^{\infty} = \bigcup \mathbb{C}P^n$.

Solution.

Problem 7. Recall that the special unitary group is defined as $SU(n) = \{A \in GL_n(\mathbb{C}) : A^*A = I\}$, where A^* denotes conjugate transpose.

(a) Prove that $A \in SU(2)$ can be expressed as

$$A = \left(\begin{array}{cc} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{array}\right)$$

where $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$. Use this to prove that SU(2) is homeomorphic to S^3 .

- (b) Prove that there is a 2-fold cover $SU(2) \rightarrow SO(3)$.
- (c) Compute $\pi_2(SO(n))$ for $n \ge 3$

¹Hint: construct a nowhere vanishing vector field on S^2 .

²Further hint: try fixing $u \in \mathbb{R}^3$ and defining vector field F(x) = ux. This won't quite work – how can you fix it? ³There is a general (non-explicit) argument given in Bredon VII.6 using the homotopy extension property, but I'd like you to give a direct argument.

⁴Suggestion: do the case n = 2 in a way that will generalize to arbitrary n.

Solution.	
Problem 8 (Bonus). In the spirit of the assignment's due date, write a topology poem.	

Solution.