Homework 1

Math 242

Due January 31, 2020 by 5pm

Topics covered:

Instructions:

- This assignment must be submitted on Canvas by the due date.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from Hatcher or Bredon, as indicated next to the problem. Note that the statements on this assignment might differ slightly from the books.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.

Problem 1. For a based space X, ΩX denotes the loop space, and $c \in \Omega X$ denotes the constant map.

- (a) Show that the map $\Omega X \to \Omega X$ defined by $\gamma \mapsto \gamma * c$ is homotopic to the identity, i.e. there is a homotopy $I \times \Omega X \to \Omega X$.¹²
- (b) Observe that this argument can be used to prove that ΩX is an H-group (check the details on your own you do not need to write it down here).

Solution.

Problem 2. Show \mathbb{R}^n is not a union of finitely many k-dimensional planes when k < n.³

Solution.

Problem 3. Let A, B_1, B_2 be based spaces.

- (a) Prove that $(B_1 \times B_2)^A \cong B_1^A \times B_2^A$ (homeomorphism).
- (b) Prove that $[A, B_1 \times B_2] \cong [A, B_1] \times [A, B_2]$ (bijection of sets).

Solution.

Problem 4. Identify $X = \mathbb{R}P^{\infty}$ with the projectivization of the space of polynomials with coefficients in \mathbb{R} , and use this to define a monoid structure $m : X \times X \to X$. Show that the map $X \to X$ defined by $f \mapsto m(f, f)$ is homotopic to a constant.⁴ Conclude that $\mathbb{R}P^{\infty}$ is an H-group.

Solution.

¹Last semester we showed that $\gamma \simeq \gamma * c$ for each fixed γ , which is weaker than what is asked for here. ²Hint: do not work too hard. If your solution is not short, it is not the correct proof.

³Note that this type of result is false for vector spaces over finite fields.

⁴Hint: use the fundamental group and covering spaces.