Homework 4

Math 141

Due October 9, 2020 by 5pm

Topics covered: compactness, connectedness, least upper bound property Instructions:

- This assignment must be submitted on Gradescope by the due date.
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- Some problems from this assignment come from Armstrong's book, as indicated next to the problem. Note that the statements on this assignment might differ slightly from the book.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.

Solution.

Problem 2. Follow the following outline to give a proof that [0,1] is compact (different from the one given in lecture). Let \mathcal{U} be an open cover of [0,1], and consider the set

 $A = \{x \in [0,1]: \text{ there is a finite subcover of } \mathcal{U} \text{ that covers } [0,x]\}.$

Let z be the least upper bound of A (why does it exist?). Prove that z = 1 and conclude.²

Solution.

Problem 3.

- (a) Let $A \subset \mathbb{R}$ be a nonempty compact subset. Prove that A has a maximal element, i.e. there exists $b \in A$ so that $a \leq b$ for every $a \in A$.
- (b) Prove the maximum value theorem: if X is compact, and $f: X \to \mathbb{R}$ is continuous, then there exists $y \in X$ so that $f(x) \leq f(y)$ for all $x \in X$.

Solution.

Problem 4 (Armstrong 3.33). Use connectedness to give a short proof of the following fact from analysis (known as the Intermediate Value Theorem).³ Fix a continuous map $f : [0,1] \to \mathbb{R}$. Show that if f(0) < 0 and f(1) > 0, then there exists $c \in (0,1)$ so that f(c) = 0.

Solution.

Problem 5.

- (a) Let O(2) be the group of 2×2 matrices A so that $A^t A = I$. Let $SO(2) \subset O(2)$ be the subset of matrices with determinant 1. Is O(2) connected? What about SO(2)?
- (b) (Extra credit) Show that $SL_2(\mathbb{R})$ is (path) connected.⁴

Solution.

Problem 6. Let S be a subset of \mathbb{R} .

(a) Give an algebraic proof that the maximum number of subsets you can obtain from S by the operations closure and complement is at most 14. ⁵

¹Frame the problem in terms of a property of f. You may want to consider equivalent formulations. Your solution should be short.

²Are you done immediately after showing z = 1? Be careful.

³The standard proof in analysis uses the least upper bound property. The proof you give will have the LUB property in the background.

⁴Look up the polar decomposition of a matrix.

⁵Hint: If c denotes complement and b denotes closure, then there are two easy relations: $c^2 = id$ and $b^2 = b$. There is one more relation needed to solve this problem.

(b) (Extra credit) Find a set S that produces 14 (give proof!). 6

Solution.

⁶Hint: Find a set that has the following features: an isolated point in the set, an isolated point in the complement, limit points in the set, limit points in the complement, only the rational numbers in some interval.