Homework 8

Math 25b

Due April 19, 2018

Topics covered: manifolds, Lagrange multipliers, differential forms Instructions:

- The homework is divided into one part for each CA. You will submit the assignment on Canvas as one pdf.
- $\bullet\,$ If you collaborate with other students, please mention this near the corresponding problems.

1 For Davis L.

Problem 1. Show that the set $X \text{ }\subset \mathbb{R}^3$ given by $x^3 + xy^2 + yz^2 + z^3 = 4$ is a 2-dimensional $manifold.$ ¹

Solution.

Problem 2. What is the volume of the largest rectangular parallelepiped contained in the ellipsoid $x^2 + 4y^2 + 9z^2 \leq 9$?

Solution.

Problem 3.

- (a) Recall/consider $SL_2(\mathbb{R}) \subset M_2(\mathbb{R})$, the subset of matrices with determinant 1. Show that $SL_2(\mathbb{R})$ is a 3-manifold. ²
- (b) Find a matrix in $SL_2(\mathbb{R})$ that is closest to the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Hint: avoid minimizing a function with square roots. There is more than one matrix that works; don't try to find all of them.

Solution.

 \Box

 \Box

¹Sometimes we shorten "2-dimensional manifold" to "2-manifold". This convention appears in later problems.

²Matrix multiplication makes $SL_2(\mathbb{R})$ into a group(!). A group that is also a manifold is called a Lie group, named after Sophus Lie.

2 For Joey F.

Problem 4.

- (a) For what values of a and b are the sets $X_a = \{(x, y, z) : x y^2 = a\}$ and $Y_b = \{(x, y, z) : x y^2 = a\}$ $x^2 + y^2 + z^2 = b$ 2-manifolds in \mathbb{R}^3 ?
- (b) For what values of a and b is the intersection $X_a \cap Y_b$ a 1-manifold? What geometric relation is there between X_a and Y_b for other values of a and b ?

Solution.

Problem 5.

(a) Fix a vector $w \in \mathbb{R}^3$, and define a 2-form $\phi : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ by

 $\phi(u, v) = \det(u, v, w).$

Express ϕ as a linear combination of elementary forms.

(b) Fix vectors $u, v \in \mathbb{R}^3$ and define a 1-form $\psi : \mathbb{R}^3 \to \mathbb{R}$ by

$$
\psi(w) = \det(u, v, w).
$$

Express ψ as a linear combination of elementary forms. What is the connection with the cross product $u \times v \in \mathbb{R}^3$?

Solution.

Problem 6. Answer each statement true or false, and give an explanation.

- (a) If $\omega_1, \omega_2 \in \Lambda^1(\mathbb{R}^3)$ and $\eta \in \Lambda^2(\mathbb{R}^3)$ are nonzero and $\omega_1 \wedge \eta = \omega_2 \wedge \eta$, then $\omega_1 = \omega_2$.
- (b) If $\omega_1, \omega_2 \in \Lambda^1(\mathbb{R}^3)$ and $\omega_1 \wedge \eta = \omega_2 \wedge \eta$ for all $\eta \in \Lambda^2(\mathbb{R}^3)$, then $\omega_1 = \omega_2$.

Solution.

 \Box

 \Box

3 For Laura Z.

Problem 7. Write each of the following 9-forms on \mathbb{R}^{13} as an elementary form

- (a) $dx_7 \wedge dx_{10} \wedge dx_6 \wedge dx_9 \wedge dx_3 \wedge dx_{13} \wedge dx_4 \wedge dx_5 \wedge dx_2$
- (b) $dx_6 \wedge dx_{11} \wedge dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_8 \wedge dx_{10} \wedge dx_5 \wedge dx_9$
- (c) $dx_{12} \wedge dx_2 \wedge dx_9 \wedge dx_8 \wedge dx_3 \wedge dx_2 \wedge dx_5 \wedge dx_1 \wedge dx_7$

Solution.

Problem 8. Let $f \in \Lambda^k(\mathbb{R}^n)$ and let $T : \mathbb{R}^m \to \mathbb{R}^n$ be a linear map. Define $T^*f : V \to \mathbb{R}$ by $T^*f(v_1,\ldots,v_k) = f(Tv_1,\ldots,Tv_k).$

- (a) Show that T^* defines a linear map $\Lambda^k(\mathbb{R}^n) \to \Lambda^k(\mathbb{R}^m)$. 3
- (b) Assume $m = n$. Show that $T^*(dx_1 \wedge \cdots \wedge dx_n)$ is $\det T \cdot dx_1 \wedge \cdots \wedge dx_n$.

Solution.

Problem 9. Consider the differential form $\omega = x dx + y dy \in \Omega^1(\mathbb{R}^2)$.

- (a) Compute $\omega(p)(v)$ for $p = (-1, 2)$ and $v = (4, 3)$.
- (b) Find $p \neq q$ so that $\omega(p)$ and $\omega(q)$ are linearly dependent in $\Lambda^1(\mathbb{R}^2)$.
- (c) Let F be the vector field associated to ω (as discussed in class). Compute the line integrals $\int_0^1 F(c(t)) \cdot c'(t) dt$ for $c_1(t) = (\cos(2\pi t), \sin(2\pi t))$ and $c_2(t) = (1 + t, 0)$.

Solution.

 \Box

 \Box

³For $f \in \Lambda^k(\mathbb{R}^n)$, the form T^*f is called the *pullback* of f along T.

4 For Beckham M.

Problem 10. Let $A \in M_n(\mathbb{R})$ be a symmetric matrix. In this problem you prove A has an eigenvector. ⁴

(a) Define $\phi : \mathbb{R}^n \to \mathbb{R}$ by $\phi(x) = \langle x, Ax \rangle = x^t A x$ (the angle brackets denote the standard inner product). Show ϕ is C^1 and prove the formula

$$
D\phi(x)(u) = 2x^t A u.
$$

Hint: you'll need to use that A is symmetric, potentially more than once.

- (b) Prove that there exists a maximum of ϕ restricted to the unit ball $X = \{x \in \mathbb{R}^n : |x|^1 = 1\}.$ Hint: you will need to use a theorem from way back at the beginning of the course.
- (c) Use Lagrange's theorem to conclude that A has an eigenvector.

Solution.

Problem 11. Prove the configuration of two linked rods with one endpoint fixed is a manifold using the manifold recognition theorem.⁵

Solution.

Problem 12. Consider linked rods made of four unit segments connecting fixed points located at distance $d \leq 4$. See the figure below.

 \boldsymbol{d}

(b) Show M is topologically equivalent to the sphere $S^2 = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}$. Hint: you can do this without any algebra. It may help to first understand the case of 3 linked rods.

Solution.

 \Box

 \Box

⁴This is the hard part of proving the spectral theorem. Once one finds a single eigenvector, an inductive argument shows that there is an orthonormal basis of eigenvectors.

⁵This is the example we discussed in class.

5 Extra credit

Problem 13. This problem is extra credit, worth 12 points 6 .

- (a) Build a working model of the linked rods in Problem 12. Use whatever materials you like. You may collaborate on this part if you want.
- (b) Determine the topology of the configuration space when $d = 1$. (It's a sphere with some number of handles – how many?) Hint: you can do this without any algebra.
- (c) For which values of $d \in (0, 4)$ is M not a manifold?

Solution.

 $^6+$ my admiration