Homework 6

Math 25b

Due March 29, 2018

Topics covered: function convergence, equicontinuity, ODEs Instructions:

- The homework is divided into one part for each CA. You will submit the assignment on Canvas as one pdf.
- If you collaborate with other students, please mention this near the corresponding problems.

1 For Laura Z.

Problem 1 (Pugh 2.147). Let \mathcal{K} be the set of nonempty compact subsets of \mathbb{R}^2 . For r > 0 and $A \in \mathcal{K}$, the r-neighborhood of A is

$$B_r(A) = \{ x \in \mathbb{R}^2 : \exists a \in A \text{ such that } d(x, a) < r \} = \bigcup_{a \in A} B_r(a).$$

For $A, B \in \mathcal{K}$, define

$$D(A,B) = \inf\{r > 0 : A \subset B_r(B) \text{ and } B \subset B_r(A)\}.$$

- (a) Show that D is a metric on \mathcal{K} .
- (b) Let $\mathcal{F} \subset \mathcal{K}$ be the set of finite subsets of \mathbb{R}^2 . Prove that \mathcal{F} is dense in \mathcal{K} .

Solution.

Problem 2 (Pugh 4.7). Consider a sequence of continuous functions $f_n : [a,b] \to \mathbb{R}$. The graph G_n of f_n is a compact subset of \mathbb{R}^2 , i.e. in the notation of the previous problem $G_n \in \mathcal{K}$.

- (a) Prove that $f_n \Rightarrow f$ if and only if (G_n) converges in \mathcal{K} to the graph G of f.
- (b) Formulate equicontinuity in terms of graphs.

Solution.

Problem 3. In class we proved that if $f_n : [a,b] \to \mathbb{R}$ are uniformly bounded and equicontinuous, then (f_n) has a uniformly convergent subsequence. Does this statement remain true if we replace [a,b] by \mathbb{R} ? Explain.

Solution.

2 For Beckham M.

Problem 4 (Pugh 4.9). Suppose $f : [0,1] \to \mathbb{R}$ is continuous and the sequence $f_n(x) = f(nx)$ is equicontinuous. What can be said about f?

Solution.

Problem 5 (Pugh 4.22). Give an example of a sequence of smooth equicontinuous functions f_n : $[0,1] \to \mathbb{R}$ whose derivatives are not uniformly bounded.¹

Solution.

Problem 6 (Pugh 4.8). Is the sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$ defined by

$$f_n(x) = \cos(n+x) + \log\left(1 + \frac{1}{\sqrt{n+2}}\sin^2(n^n x)\right)$$

equicontinuous? Prove or disprove. Hint: this problem can be solved without working very hard.

Solution.

¹Recall that in class we showed that if $(f_n) \subset C_b$ is a sequence of differentiable functions, and the derivatives are uniformly bounded, then (f_n) is equicontinuous. This exercise shows the converse is false.

3 For Joey F.

Problem 7 (Pugh 4.21). Suppose that $f_n : [0,1] \to \mathbb{R}$ are continuous functions and (f_n) is equicontinuous and bounded. Define $f : [0,1] \to \mathbb{R}$ by

$$f(x) = \sup\{f_n(x) : n \in \mathbb{N}\}$$

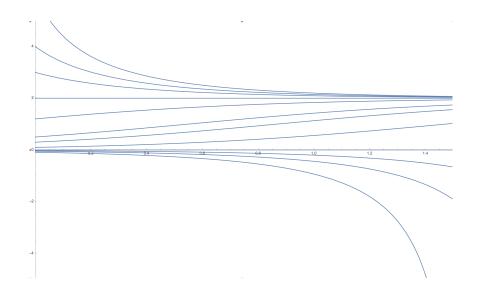
- (a) Prove that f is continuous. Remark: note that the supremum of $\{f_n(x) : n \in \mathbb{N}\}$ may either be a limit point or an isolated point of of this set.
- (b) Show that (a) fails if (f_n) is not equicontinuous.
- (c) Show that it's possible for f to be continuous, but (f_n) not equicontinuous.

Solution.

Problem 8. The logistic equation is the differential equation

$$x' = ax - bx^2.$$

It models population growth, among other things.² Here is a plot of some solutions for $x' = 2x - x^2$.



- (a) Determine all the constant solutions of $x' = ax bx^2$. What are the possible initial conditions $x(0) = x_0$? What is the physical interpretation of these solutions?
- (b) What happens to solutions at time goes to infinity? Consider finitely many cases, depending on the initial condition. (Determine this by looking at where the function ax-bx² is positive or negative – what does this tell you about the solutions?) Again, give a physical interpretation, where possible.

²It can also be used to study the spread of contagions (diseases, rumor, etc).

Solution.

Problem 9 (Pugh 4.35). Consider the ODE $x' = x^2$ on \mathbb{R} .

(a) Find the solution of the ODE with initial condition $x(0) = x_0$. Hint: re-write the ODE as $\frac{x'(t)}{x(t)^2} = 1$; to find an expression for the solution, consider the integral equation

$$\int_0^t \frac{x'(t)}{x(t)^2} \, dt = \int_0^t 1 \, dt;$$

the left-hand side can be computed using u-substitution.

(b) Are the solutions to this ODE defined for all time or do they escape to infinite in finite time?

Solution.

4 For Davis L.

Let f(t,x) be a bounded continuous function $|f(t,x)| \leq M$ defined on $[0,1] \times (-\infty,\infty)$. In this problem you fill in some of the details of the proof of Peano's theorem, which says that the initial-value problem

$$x' = f(t, x), \quad x(0) = x_0$$

has a solution $\phi : [0, 1] \to \mathbb{R}$.

Let ϕ_n be the Euler approximation with step size 1/n. Denoting $t_i = i/n$ for i = 0, ..., n, recall that ϕ_n is the continuous function with the property that $\phi'_n(t) = f(t_i, \phi_n(t_i))$ for $t \in (t_i, t_{i+1})$. As in our proof, define

$$\Delta_n(t) = \begin{cases} \phi'_n(t) - f(t, \phi_n(t)) & t \neq t_i \\ 0 & t = t_i \end{cases}$$

By the fundamental theorem of calculus,

$$\phi_n(t) = x_0 + \int_0^t \left[f(s, \phi_n(s)) + \Delta_n(s) \right] ds.$$

Problem 10 (Rudin 7.25). Find a uniformly convergent subsequence of (ϕ_n) as follows.

- (a) Show that $||\Delta_n|| \leq 2M$ and Δ_n is integrable.
- (b) Denoting $M_1 = |x_0| + M$, show $||\phi_n|| \le M_1$ for all *n*.
- (c) Conclude that (ϕ_n) is bounded and equicontinuous, and that after replacing (ϕ_n) by a subsequence, there is a continuous function $\phi : [0,1] \to \mathbb{R}$ so that $\phi_n \Rightarrow \phi$.

Solution.

Problem 11. Assume that $\phi_n \Rightarrow \phi$ as in the previous problem.

- (a) Prove that $f(t, \phi_n(t)) \to f(t, \phi(t))$ uniformly on [0, 1], i.e. show that given $\epsilon > 0$, there exists N so that n > N implies $|f(t, \phi(t)) - f(t, \phi_n(t))| < \epsilon$ for all $t \in [0, 1]$. Hint: use that f is uniformly continuous on any closed rectangle (which closed rectangle should you choose?).
- (b) Prove that $\Delta_n(t) \to 0$ uniformly on [0, 1].

Solution.

Problem 12. Conclude that $\phi(t) = x_0 + \int_0^t f(s, \phi(s)) ds$ for all $t \in [0, 1]$ and that ϕ solves the initial-value problem.

Solution.

6