Homework 3

Math 25b

Due February 22, 2018

Topics covered: compactness, continuity theorems, Heine–Borel, derivatives Instructions:

- The homework is divided into one part for each CA. You will submit the assignment on Canvas as one document.
- If you collaborate with other students, please mention this near the corresponding problems.

1 For Joey F.

Problem 1. Show that if $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ are sequentially compact, then $X \times Y \subset \mathbb{R}^{n+m}$ is sequentially compact.

Solution.

Problem 2. Assume that $X \subset \mathbb{R}^n$ is covering compact.

- (a) Show that X bounded. Hint: use compactness to cover X by finitely many balls of radius 1. Why does this imply that X is bounded?
- (b) Show that X is closed. Hint: fix $y \in X^c$ and for each $x \in X$ choose $r > 0$ so that $y \notin B_r(x)$. Observe that this gives a cover of X , use compactness to obtain a finite subcover, and conclude.

Solution.

Problem 3 (Pugh 2.88).

- (a) Prove that a closed subset A of a covering compact set $K \subset \mathbb{R}^n$ is covering compact. Hint: start with an open covering of A and add one open set to get a covering of K.
- (b) Conclude that if $A \subset \mathbb{R}^n$ is closed and bounded, then A is covering compact. Hint: use that closed rectangles are compact together with (a) . ¹

Solution.

 \Box

 \Box

¹This completes the proof that $X \subset \mathbb{R}^n$ is covering compact if and only if it is closed and bounded. Combined with class, it shows that covering and sequential compactness are equivalent notions.

2 For Laura Z.

Problem 4. If U is open and $C \subset U$ is covering compact, show that there is a covering compact set D such that $C \subset \text{int}(D)$ and $D \subset U$.

Solution.

Problem 5. In this problem you prove the onion ring theorem: Fix $n \geq 1$ and let

 $Q_1 \supset Q_2 \supset \cdots$

be a sequence of closed rectangles in \mathbb{R}^n . Then $\bigcap Q_k \neq \emptyset$.

- (a) First prove this for $n = 1$. Hint: Write $Q_k = [a_k, b_k]$ and consider $z = \sup\{a_k\}$ (why does this least upper bound exist?).
- (b) Observe that the general case follows from the case $n = 1$ (project to the coordinate axes).

Solution.

Problem 6. Use the Onion Ring Theorem to give an alternate proof of the following statement of the Intermediate Value Theorem: If $f : [a, b] \to \mathbb{R}$ is continuous and $f(a) < 0 < f(b)$, then there exists $c \in (a, b)$ with $f(c) = 0$. Hint: Do this using the "method of bisection" similar to our proof that closed rectangles are covering compact.

Solution.

 $\hfill \square$

 \Box

3 For Beckham M.

Problem 7.

- (a) Explain why derivatives are a "local property": if $f(x) = g(x)$ for all x in some open interval containing a, then $f'(a) = g'(a)$.
- (b) Find $f'(x)$ and $f''(x)$ for $f(x) = |x|^3$. Does $f'''(x)$ exist for all x^3

Solution.

Problem 8. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$
f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}
$$

Compute f' where it's defined. Show that f' is not continuous at 0. 2

Solution.

Problem 9. Suppose that f is differentiable at 0 and $f(0) = 0$. Prove that $f(x) = xg(x)$ for some function g that is continuous at 0.

Solution.

 \Box

 \Box

²If a function $f : \mathbb{R} \to \mathbb{R}$ is differentiable and f' is continuous, we call f continuously differentiable. In this problem you show that not all differentiable functions are continuously differentiable.

4 For Davis L.

Problem 10. A sequence (x_n) in \mathbb{R}^d is called Cauchy if for every $\epsilon > 0$ there exists $N > 0$ so that $n, m > N$ implies $|x_n - x_m| < \epsilon$. It's easy to check that a convergent sequence is Cauchy.³ In this problem you prove the converse.⁴ Fix a Cauchy sequence (x_n) .

- (a) Show that every subsequence of (x_n) has a convergent subsequence. Hint: Bolzano–Weierstrass.
- (b) Show that if (a_k) and (b_ℓ) are subsequences of (x_n) and $a_k \to a$ and $b_\ell \to b$, then $a = b$.
- (c) Conclude from x_n converges. Hint: use a problem from HW2.

Solution.

Problem 11. Suppose that (a_n) is a Cauchy sequence and (a_{n_k}) is a subsequence that converges to b. Prove that (a_n) converges to b.

Solution.

Problem 12. Explain why the following sets are compact.

- (a) The Sierpinski triangle $S \subset \mathbb{R}^2$. (You may want to read more about the construction of the Sierpinski triangle on Wikipedia.)
- (b) The set $X = \{A \in M_n(\mathbb{R}) : A^t A = I\}$ of orthogonal matrices.

Solution.

 \Box

 \Box

³Check this!

⁴A metric space in which every Cauchy sequence converges is called *complete*. This will come up again.