Homework 6

Math 241

Due December 6, 2019 by 5pm

Topics covered: homology of cell complexes, cellular homology, Euler characteristic

Instructions:

e This assignment must be submitted on Canvas by the due date.
e If you collaborate with other students, please mention this near the corresponding problems.

e Most problems from this assignment come from Hatcher or Bredon, as indicated next to the
problem. Note that the statements on this assignment might differ slightly from the books.
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Problem 1. Let X be the union of S?> C R? with the line segment connecting the north and south
poles. Give X a cell structure and use it to compute Hy(X). (Remark: We know X is homotopy
equivalent to S? v S1, but this fact is antithetical to the evercise.)

Solution. O

Problem 2 (Hatcher 2.2.15). Let X be a cell complex. Show that the kernel of the cellular boundary
map dy, is isomorphic to Hy(X"). Conclude that Hy,(X*) is free.

Solution. O

Problem 3 (Hatcher 2.2.11). Consider the quotient space X of a cube I® obtained by identifying
each square face with the opposite square face via a Tight handed screw motion consisting of a
translation by one unit in the direction perpendicular to the face combined with a one-quarter twist
of the face about its center point. Compute the homology groups of this complex.

Solution. O

Problem 4 (Hatcher 2.2.21). Let X be a finite cell complex that is a union of subcomplezes A and
B. Show x(X) = x(A) + x(B) — x(AN B). Prove that if M, N are n-dimensional manifolds, then

X(M#N) = x(M) + x(N) = x(5")-
Solution. O]
Problem 5. Critique the following argument. “Since the short exact sequences
0— Sk(A) = Sp(X) — Skp(X,A) =0
always split, there is always a splitting Hy(X) = Hi(A) ® Hi(X, A).”
Solution. O]

Problem 6. Show that if a closed orientable surface S, of genus g is a covering space of Sy, then
g=d(h—1)+ 1, where d is the degree of the cover. Show for every d > 1, such a cover ezists.

Solution. O

Problem 7. Consider the genus-g surface S, embedded in R? in the standard way so that it bounds
a region R. Let X be the space obtained from R R by identifying the two boundary components
by the identity. Compute the reduced homology groups of X using Mayer- Vietoris."

Solution. O

Problem 8 (Hatcher 2.2.24). Suppose we build S? by gluing finitely many polygons along their
edges in pairs.

(a) Show that the 1-skeleton of the resulting cell structure on S? is neither of the graphs Ks3 or
Ks. 2

When g = 1, what space do you get? (This doesn’t help for doing the computation, but might help with intuition.)
2Hint: Use the Euler characteristic. What is the minimum number of edges each face has?
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(b) Deduce that K33 and K5 cannot be embedded in R2. We say that these graphs are not planar.>

Solution. O

3Kuratowski’s theorem says that a graph is planar if and only if it does not contain K33 or K5 as a subgraph(!).



