
Homework 9

Math 25b

Due April 18, 2018

Topics covered: forms, differential forms, pullbacks, exterior derivatives, chains

Instructions:

• The homework is divided into one part for each CA. You will submit each part to the corre-
sponding CA’s mailbox on the second floor of the science center.

• If your submission to any one CA takes multiple pages, then staple them together. A stapler
is available in the Cabot library in the science center.

• If you collaborate with other students, please mention this near the corresponding problems.

• Most problems from this assignment come from Spivak’s Calculus or Spivak’s Calculus on
manifolds or Munkres’ Analysis on manifolds. I’ve indicated this next to the problems (e.g.
Spivak, CoM 1-2 means problem 2 of chapter 1 from Calculus on Manifolds).

• Any result that we proved in class can be freely used on the homework. If there’s a result
that we haven’t stated in class that you want to use, then you have to prove it. If there’s a
result that we stated in class, but haven’t proven, it’s best to ask for clarification.

1



Your Name Math 25b, Homework 9

1 For Michele

Problem 1 (Munkres, 27-2). Write each of the following 9-forms on R13 as an elementary form

(a) dx7 ∧ dx10 ∧ dx6 ∧ dx9 ∧ dx3 ∧ dx13 ∧ dx4 ∧ dx5 ∧ dx2

(b) dx6 ∧ dx11 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx8 ∧ dx10 ∧ dx5 ∧ dx9

(c) dx12 ∧ dx2 ∧ dx9 ∧ dx8 ∧ dx3 ∧ dx2 ∧ dx5 ∧ dx1 ∧ dx7

Solution.

Problem 2. Let ω = dx1∧· · ·∧dxn ∈ Λn(Rn). A basis v1, . . . , vn for Rn is called positively oriented
if ω(v1, . . . , vn) > 0 and is called negatively oriented if ω(v1, . . . , vn) < 0. Determine whether each
of the following bases is positively oriented or negatively oriented.1

(a) 4e1 + 5e2, 8e1 − e2 on R2

(b) e3, e1, e2 on R3

(c) −e2, e1,−e3 on R3

(d) e2 + e1, e3, e2, e4 on R4

(e) e3, e2, e4, e1 on R4

Solution.

Problem 3 (Spivak, CoM 4-6). Fix vectors v1, . . . , vn−1 ∈ Rn and define φ ∈ Λ1(Rn) by

φ(v) = dx1 ∧ · · · ∧ dxn(v1, . . . , vn−1, v).

(a) Recall the representation theorem from Math 25a, and use it to deduce there exists a vector
w ∈ Rn so that

〈v, w〉 = det(v1, . . . , vn−1, v)

for every v ∈ Rn. This vector w is called the cross product of v1, . . . , vn−1, and we write
w = v1 × · · · × vn−1.

(b) Interpret the cross product on R2.

(c) Show that if v1, . . . , vn−1 are linearly independent, then v1, . . . , vn−1, v1×· · ·×vn−1 is positively
oriented.

Solution.

1For vectors in R2 or R3 you can tell if a basis is positively or negatively oriented using the right-hand rule.
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Your Name Math 25b, Homework 9

2 For Charlie

Problem 4 (Spivak, CoM 4-9). Prove the following properties of the cross product in R3.

(a) v×w = (v2w3−v3w2)e1+(v3w1−v1w3)e2+(v1w2−v2w1)e3. Hint: recall that the coefficients
of a vector z ∈ Rn with respect to the standard basis/inner product are given by z =

∑
〈z, ei〉ei.

(b) |v × w| = |v| · |w| · | sin θ| where θ ∈ [0, π] is the angle between v and w. Furthermore,

〈v × w, v〉 = 〈v × w,w〉 = 0.

Hint: Let z be a unit vector in the orthogonal complement of span(v, w). Recall that det(v, w, z)
can be interpreted as the volume of a certain parallelepiped. Show that this parallelepiped has
volume |v| · |w| · sin θ. How does 〈z, v × w〉 relate to |v × w|?

(c) For any vectors v, w, z,

〈v, w × z〉 = 〈w, z × v〉 = 〈z, v × w〉
v × (w × z) = 〈v, z〉w − 〈v, w〉z
(v × w)× z = 〈v, z〉w − 〈w, z〉v
Use the last two to conclude that the cross product is not associative (choose specific vectors!).

Hint: to prove the last two use (a). Also, your proof of the third equality should be “the proof
in this case is entirely similar to the proof of the second equality”.

(d) |v × w| =
√
〈v, v〉 · 〈w,w〉 − 〈v, w〉2.

Solution.

Problem 5 (Munkres, 30-4). Let A = R2 \{0}. Consider the 1-form on A defined by

ω = (x dx+ y dy)/(x2 + y2).

(a) Show that dω = 0. In this case we say that ω is closed.

(b) Show that in polar coordinates ω = 1
r dr. In other words, consider the polar coordinates

transformation φ(r, θ) = (r cos θ, r sin θ), and compute φ∗ω = 1
r dr.

(c) Show that there is a function f so that df = ω. In this case we say that ω is exact. Hint:
Use (b) and the fundamental theorem of calculus. Find g(r, θ) so that dg = D1g dr +D2g dθ
is equal to ω = 1

r dr. Then switch back to x, y coordinates.

Solution.

Problem 6 (Munkres, 27-4; Spivak 4-2). Let f ∈ Λk(Rn) and let T : Rm → Rn be a linear map.
Define T ∗f : V → R by T ∗f(v1, . . . , vk) = f(Tv1, . . . , T vk).

(a) Show that T ∗f ∈ Λk(Rm).

(b) Assume m = n. Show that T ∗(dx1 ∧ · · · ∧ dxn) is detT · dx1 ∧ · · · ∧ dxn.

Solution.
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3 For Ellen

Problem 7 (Munkres, 30-2). Consider the differential forms

ω = xy dx+ 3 dy − yz dz and η = x dx− yz2 dy + 2x dz

on R3. Verify by direct computation that d(dω) = 0 and d(ω ∧ η) = (dω) ∧ η − ω ∧ dη.

Solution.

Problem 8. Let ω be a differential k-form on Rn and fix a ∈ Rn. True or false:

(a) If ω(x) = 0 for all x near a, then ω(a) = 0.

(b) If ω(a) = 0, then dω(a) = 0.

Make sure to explain your answer.

Solution.

Problem 9 (Munkres, 30-5). In this problem you will show that the 1-form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy

is closed but not exact on A = R2 \{0}. 2

(a) Show ω is closed.

(b) Let B be the complement [0,∞) × {0} in R2 (i.e. the complement of the positive x-axis).
Observe that for each z = (x, y) ∈ B, there is a unique 0 < t < 2π such that

x = |z| · cos t and y = |z| · sin t.

Denote the function (x, y) 7→ t by φ : B → (0, 2π). Give a formula for φ and explain why φ
is C1 (which theorem of ours does it follow from?).

(c) Show that ω = dφ in B. Hint: tanφ = y/x if x 6= 0 and cotφ = x/y if y 6= 0.

(d) Show that if g is a closed 0-form in B, then g is constant in B. Hint: use the multivariable
mean value theorem – make sure the hypotheses apply in the way you use it.3

(e) Show that ω is not exact in A. Hint: If ω = df in A, then f − φ is constant in B. Evaluate
the limit of f(1, y) as y approaches 0 through positive and negative values.

Solution.

2From this you can conclude that the disk D = {(x, y) : x2 + y2 < 1} and the punctured disk D \ {0} are not
diffeomorphic. In other words, differential forms can be used to detect the topology of subsets of Rn!

3Note that there are open sets U ⊂ R2 and functions f : U → R2 so that Df(u) = 0 for all u ∈ U but f is not
constant.

4



Your Name Math 25b, Homework 9

4 For Natalia

Problem 10 (Spivak, CoM 4-23). For R > 0 and n an integer, define the singular 1-cube cR,n :
[0, 1]→ R2 \{0} by

cR,n(t) = (R cos 2πnt,R sin 2πnt).

Fix 0 < R2 < R1 and show that there is a singular 2-cube c : [0, 1]2 → R2 \{0} such that

cR1,n − cR2,n = ∂c.

Solution.

Problem 11 (Spivak, CoM 4-25). Let c be a C1 singular k-cube and p : [0, 1]k → [0, 1]k a injective
C1 function such that p([0, 1]k) = [0, 1]k and det p′(x) > 0 for x ∈ [0, 1]k. If ω is a k-form on Rn,
show that ∫

c
ω =

∫
c◦p

ω.

Solution.

Problem 12 (Spivak, CoM 4-19). Fix F = (F1, F2, F3) : R3 → R3, and view F as a vector field.
Define forms

ωF = F1 dx+ F2 dy + F3 dz

ηF = F1 dy ∧ dz + F2 dz ∧ dx+ F3 dx ∧ dy.

(a) Show that df = ωgrad(f), d(ωF ) = ηcurl(F ), and d(ηF ) = div(F ) dx ∧ dy ∧ dz.

(b) Use (a) to prove that curl(grad(f)) = 0 and div(curl(F )) = 0.

Solution.
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