Homework 8

Math 25b

Due April 11, 2018

Topics covered: Fubini's theorem, partitions of unity, diffeomorphisms

Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Most problems from this assignment come from Spivak's *Calculus* or Spivak's *Calculus on manifolds* or Munkres' *Analysis on manifolds*. I've indicated this next to the problems (e.g. Spivak, CoM 1-2 means problem 2 of chapter 1 from Calculus on Manifolds).
- Any result that we proved in class can be freely used on the homework. If there's a result that we haven't stated in class that you want to use, then you have to prove it. If there's a result that we stated in class, but haven't proven, it's best to ask for clarification.

1 For Ellen

Problem 0. One of the problems on this assignment has a part that asks you to show something that's false. You'll need to find it. In your solution you should explain why it's false. Good luck!

Problem 1 (Munkres, 12-2). Let $Q = [0,1] \times [0,1]$. Define $f : Q \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} 1/q & y \in \mathbb{Q} \text{ and } x = p/q \text{ lowest terms} \\ 0 & else \end{cases}$$

- (a) Does $\int_{O} f$ exist? Explain.
- (b) Compute $\underline{\int}_{y \in I} f(x, y)$ and $\overline{\int}_{y \in I} f(x, y)$.
- (c) Verify Fubini's theorem.

Solution.

Problem 2 (Spivak, CoM 3-28 and Munkres, 12-4 and Hubbard, 4.5.11). Consider $f : \mathbb{R}^2 \to \mathbb{R}$.

- (a) Use Fubini's theorem to give an easy proof that $D_1D_2f = D_2D_1f$ if these are continuous (Clairaut's theorem).
- (b) The function

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & otherwise \end{cases}$$

is the standard example of a function that is twice-differentiable but $D_1D_2(f) \neq D_2D_1(f)$ at 0 (you showed this in HW4). Where does the proof of (a) fail in this case?¹

Solution.

Problem 3 (Spivak, CoM 3-26). Let $f : [a,b] \to \mathbb{R}$ be bounded, integrable, and non-negative. Let $A = \{(x,y) : a \le x \le b \text{ and } 0 \le y \le f(x)\}$. Show that A is rectifiable and has area $\int_a^b f$. Hint: most of the work goes toward showing that A is rectifiable. Warning: f is not assumed to be continuous!

Solution.

¹You might enjoy computing the partial derivatives with Mathematica or Wolfram Alpha.

2 For Charlie

Problem 4 (Spivak, CoM 3-29).

- (a) Use Fubini's theorem to derive the volume of a cone C with base r and height h.
- (b) Fix $a \ge 0$, and let $f : [a,b] \to \mathbb{R}$ and $g : [a,b] \to \mathbb{R}$ be continuous functions such that $f(z) \le g(z)$ for each $z \in [a,b]$. Consider $S = \{(y,z) : f(z) \le y \le g(z) \text{ and } a \le z \le b\}$. Derive an expression for the volume of a set $C \subset \mathbb{R}^3$ obtained by revolving S about the z-axis.
- (c) Repeat (b) but now with f, g functions of y, i.e. $S = \{(y,z) : a \le y \le b \text{ and } f(y) \le z \le g(y)\}$. (Again revolving S around the z-axis.)²

Solution.

Problem 5 (Spivak, CoM 3-30). Let C be the set constructed in HW3#3. Show that

$$\int_{y \in [0,1]} \left(\int_{x \in [0,1]} \chi_C(x,y) \right) = \int_{x \in [0,1]} \left(\int_{y \in [0,1]} \chi_C(x,y) \right) = 0$$

but that $\int_{[0,1]\times[0,1]} \chi_C$ does not exist.

Solution.

Problem 6 (Spivak, CoM 3-36). In this problem you prove Cavalieri's principle.

- (a) Let A and B be rectifiable subsets of \mathbb{R}^3 . Let $A_c = \{(x, y) : (x, y, c) \in A\}$ and define B_c similarly. Suppose A_c and B_c are rectifiable and have the same area for each c. Show that A and B have the same volume.³
- (b) Look up the "napkin-ring problem," which is a popular application of Cavalieri's principle. Explain it to your friends.

Solution.

²In multivariable calculus, these two methods of computing volumes of revolution are typically called the "shell" and the "washer" methods.

³See pictures on the course webpage.

3 For Natalia

Problem 7 (Munkres, 16-1). In this problem you will show

$$f(x) = \begin{cases} e^{-1/x} & x > 0\\ 0 & x \le 0. \end{cases}$$

is smooth $f : \mathbb{R} \to \mathbb{R}$.⁴

- (a) Show that $x < e^x$ for all $x \in \mathbb{R}$. Hint: use the power series definition.
- (b) Prove that f is continuous at 0.
- (c) Prove that f is differentiable at 0 and f'(0) = 0. Hint: L'Hopital. It might help to write $\frac{e^{-1/x}}{r} = \frac{1/x}{e^{1/x}}$.
- (d) For each $k \ge 1$ the functions $f^{(k)}(x)$ are linear combinations of the functions $\frac{1}{x^n}e^{-1/x}$ on $(0,\infty)$. Conclude that f is smooth on $(0,\infty)$.
- (e) Show that $\lim_{x\to 0+} \frac{1}{x^n} e^{-1/x} = 0$ for every $n \ge 1$. Conclude that $f^{(k)}(0) = 0$ for every k.

Solution.

Problem 8 (Spival 2-26). Let h(x) = f(x)f(1-x), where f is the function from the previous problem. Observe that $h : \mathbb{R} \to \mathbb{R}$ is smooth and that h is positive on (0, 1) and 0 elsewhere.

- (a) Show that there is a smooth function $g : \mathbb{R} \to [0,1]$ such that g(x) = 0 for $x \le 0$ and g(x) = 1for $x \ge \epsilon$. Hint: if ϕ is a smooth function that is positive on $(0,\epsilon)$ and 0 otherwise, consider $g(x) = \int_0^x \phi / \int_0^\epsilon \phi$.
- (b) If $a \in \mathbb{R}^n$, define $\phi : \mathbb{R}^n \to \mathbb{R}$ by

$$\phi(x) = h(\frac{x_1 - a_1}{\epsilon}) \cdot \ldots \cdot h(\frac{x_n - a_n}{\epsilon}).$$

Show that g is smooth, positive on $Q = (a_1, a_1 + \epsilon) \times \cdots \times (a_n, a_n + \epsilon)$, and zero elsewhere.

- (c) If $A \subset \mathbb{R}^n$ is open and $C \subset A$ is compact, show that there is a non-negative smooth function $\phi : A \to \mathbb{R}$ such that $\phi(x) > 0$ for $x \in C$ and $\phi = 0$ outside of some closed set contained in A.
- (d) Show that we can choose such an ϕ so that $\phi : A \to [0,1]$ and $\phi(x) = 1$ for $x \in C$. Hint: Compose the function from (c) by the function from (a) with a smart choice of ϵ .

Solution.

⁴We haven't given a formal treatment to exponential functions, although you probably know some basic properties about them. One rigorous definition is $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$. (One can show that this series converges for every x.) From this definition one can deduce some familiar properties like $e^0 = 1$ and $e^x \cdot e^y = e^{x+y}$. A different characterization/definition of e^x is as the unique solution of the differential equation f' = f with initial condition f(0) = 1 (c.f. Extra Credit 2).

4 For Michele

Problem 9 (Munkres, 16-3). Fix any $S \subset \mathbb{R}^n$ and fix $y \in S$. Say that a function $f : S \to \mathbb{R}$ is continuously differentiable at y if there is a C^1 function $g : U \to \mathbb{R}$ defined in a neighborhood of y in \mathbb{R}^n such that g agrees with f on $U \cap S$.

(a) Suppose $f : S \to \mathbb{R}$ is continuously differentiable at y. Show that if $\phi : \mathbb{R}^n \to \mathbb{R}$ is a C^1 function whose support lies in U, then the function

$$h(x) = \begin{cases} \phi(x)g(x) & x \in U\\ 0 & x \notin supp(\phi) \end{cases}$$

is a well-defined C^1 function on \mathbb{R}^n .

(b) Prove: If $f: S \to \mathbb{R}$ is continuously differentiable at each $y \in S$, then f may be extended to a C^1 function $h: A \to \mathbb{R}$ defined on an open set containing S. Hint: this is a gluing problem.

Solution.

Problem 10 (Spivak, CoM 3-40). Fix $g : \mathbb{R}^n \to \mathbb{R}^n$, and suppose $a \in \mathbb{R}^n$ satisfies det $Dg(a) \neq 0$.

- (a) Prove that in some open set containing a we can write $g = T \circ f_n \circ \cdots \circ f_1$, where f_i is of the form $f_i(x) = (x_1, \ldots, \phi_i(x), \ldots, x_n)$, and T is a linear map. Hint: Use the map T to replace g by a function whose derivative at a is the identity.
- (b) Show that we can write $g = g_n \circ \cdots \circ g_1$ if and only if Dg(a) is a diagonal matrix.

Solution.