Homework 8

Math 25b

Due April 11, 2018

Topics covered: Fubini's theorem, partitions of unity, diffeomorphisms
Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Most problems from this assignment come from Spivak's Calculus or Spivak's Calculus on manifolds or Munkres' Analysis on manifolds. I've indicated this next to the problems (e.g. Spivak, CoM 1-2 means problem 2 of chapter 1 from Calculus on Manifolds).
- Any result that we proved in class can be freely used on the homework. If there's a result that we haven't stated in class that you want to use, then you have to prove it. If there's a result that we stated in class, but haven't proven, it's best to ask for clarification.

1 For Ellen

Problem 0. One of the problems on this assignment has a part that asks you to show something that's false. You'll need to find it. In your solution you should explain why it's false. Good luck!

Problem 1 (Munkres, 12-2). Let $Q=[0,1] \times[0,1]$. Define $f: Q \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}1 / q & y \in \mathbb{Q} \text { and } x=p / q \text { lowest terms } \\ 0 & \text { else }\end{cases}
$$

(a) Does $\int_{Q} f$ exist? Explain.
(b) Compute $\underline{\int}_{y \in I} f(x, y)$ and $\bar{\int}_{y \in I} f(x, y)$.
(c) Verify Fubini's theorem.

Solution.

Problem 2 (Spivak, CoM 3-28 and Munkres, 12-4 and Hubbard, 4.5.11). Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(a) Use Fubini's theorem to give an easy proof that $D_{1} D_{2} f=D_{2} D_{1} f$ if these are continuous (Clairaut's theorem).
(b) The function

$$
f(x, y)= \begin{cases}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{cases}
$$

is the standard example of a function that is twice-differentiable but $D_{1} D_{2}(f) \neq D_{2} D_{1}(f)$ at 0 (you showed this in HW4). Where does the proof of (a) fail in this case? ${ }^{1}$

Solution.
Problem 3 (Spivak, CoM 3-26). Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded, integrable, and non-negative. Let $A=\{(x, y): a \leq x \leq b$ and $0 \leq y \leq f(x)\}$. Show that A is rectifiable and has area $\int_{a}^{b} f$. Hint: most of the work goes toward showing that A is rectifiable. Warning: f is not assumed to be continuous!

Solution.

[^0]
2 For Charlie

Problem 4 (Spivak, CoM 3-29).
(a) Use Fubini's theorem to derive the volume of a cone C with base r and height h.
(b) Fix $a \geq 0$, and let $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ be continuous functions such that $f(z) \leq g(z)$ for each $z \in[a, b]$. Consider $S=\{(y, z): f(z) \leq y \leq g(z)$ and $a \leq z \leq b\}$. Derive an expression for the volume of a set $C \subset \mathbb{R}^{3}$ obtained by revolving S about the z-axis.
(c) Repeat (b) but now with f, g functions of y, i.e. $S=\{(y, z): a \leq y \leq b$ and $f(y) \leq z \leq g(y)\}$. (Again revolving S around the z-axis.) ${ }^{2}$

Solution.

Problem 5 (Spivak, CoM 3-30). Let C be the set constructed in HW3\#3. Show that

$$
\int_{y \in[0,1]}\left(\int_{x \in[0,1]} \chi_{C}(x, y)\right)=\int_{x \in[0,1]}\left(\int_{y \in[0,1]} \chi_{C}(x, y)\right)=0
$$

but that $\int_{[0,1] \times[0,1]} \chi_{C}$ does not exist.
Solution.
Problem 6 (Spivak, CoM 3-36). In this problem you prove Cavalieri's principle.
(a) Let A and B be rectifiable subsets of \mathbb{R}^{3}. Let $A_{c}=\{(x, y):(x, y, c) \in A\}$ and define B_{c} similarly. Suppose A_{c} and B_{c} are rectifiable and have the same area for each c. Show that A and B have the same volume. ${ }^{3}$
(b) Look up the "napkin-ring problem," which is a popular application of Cavalieri's principle. Explain it to your friends.

Solution.

[^1]
3 For Natalia

Problem 7 (Munkres, 16-1). In this problem you will show

$$
f(x)= \begin{cases}e^{-1 / x} & x>0 \\ 0 & x \leq 0\end{cases}
$$

is smooth $f: \mathbb{R} \rightarrow \mathbb{R} .{ }^{4}$
(a) Show that $x<e^{x}$ for all $x \in \mathbb{R}$. Hint: use the power series definition.
(b) Prove that f is continuous at 0 .
(c) Prove that f is differentiable at 0 and $f^{\prime}(0)=0$. Hint: L'Hopital. It might help to write $\frac{e^{-1 / x}}{x}=\frac{1 / x}{e^{1 / x}}$.
(d) For each $k \geq 1$ the functions $f^{(k)}(x)$ are linear combinations of the functions $\frac{1}{x^{n}} e^{-1 / x}$ on $(0, \infty)$. Conclude that f is smooth on $(0, \infty)$.
(e) Show that $\lim _{x \rightarrow 0+} \frac{1}{x^{n}} e^{-1 / x}=0$ for every $n \geq 1$. Conclude that $f^{(k)}(0)=0$ for every k.

Solution.

Problem 8 (Spivak 2-26). Let $h(x)=f(x) f(1-x)$, where f is the function from the previous problem. Observe that $h: \mathbb{R} \rightarrow \mathbb{R}$ is smooth and that h is positive on $(0,1)$ and 0 elsewhere.
(a) Show that there is a smooth function $g: \mathbb{R} \rightarrow[0,1]$ such that $g(x)=0$ for $x \leq 0$ and $g(x)=1$ for $x \geq \epsilon$. Hint: if ϕ is a smooth function that is positive on $(0, \epsilon)$ and 0 otherwise, consider $g(x)=\int_{0}^{x} \phi / \int_{0}^{\epsilon} \phi$.
(b) If $a \in \mathbb{R}^{n}$, define $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\phi(x)=h\left(\frac{x_{1}-a_{1}}{\epsilon}\right) \cdot \ldots \cdot h\left(\frac{x_{n}-a_{n}}{\epsilon}\right) .
$$

Show that g is smooth, positive on $Q=\left(a_{1}, a_{1}+\epsilon\right) \times \cdots \times\left(a_{n}, a_{n}+\epsilon\right)$, and zero elsewhere.
(c) If $A \subset \mathbb{R}^{n}$ is open and $C \subset A$ is compact, show that there is a non-negative smooth function $\phi: A \rightarrow \mathbb{R}$ such that $\phi(x)>0$ for $x \in C$ and $\phi=0$ outside of some closed set contained in A.
(d) Show that we can choose such an ϕ so that $\phi: A \rightarrow[0,1]$ and $\phi(x)=1$ for $x \in C$. Hint: Compose the function from (c) by the function from (a) with a smart choice of ϵ.

Solution.

[^2]
4 For Michele

Problem 9 (Munkres, 16-3). Fix any $S \subset \mathbb{R}^{n}$ and fix $y \in S$. Say that a function $f: S \rightarrow \mathbb{R}$ is continuously differentiable at y if there is a C^{1} function $g: U \rightarrow \mathbb{R}$ defined in a neighborhood of y in \mathbb{R}^{n} such that g agrees with f on $U \cap S$.
(a) Suppose $f: S \rightarrow \mathbb{R}$ is continuously differentiable at y. Show that if $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a C^{1} function whose support lies in U, then the function

$$
h(x)= \begin{cases}\phi(x) g(x) & x \in U \\ 0 & x \notin \operatorname{supp}(\phi)\end{cases}
$$

is a well-defined C^{1} function on \mathbb{R}^{n}.
(b) Prove: If $f: S \rightarrow \mathbb{R}$ is continuously differentiable at each $y \in S$, then f may be extended to a C^{1} function $h: A \rightarrow \mathbb{R}$ defined on an open set containing S. Hint: this is a gluing problem.

Solution.

Problem 10 (Spivak, CoM 3-40). Fix $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, and suppose $a \in \mathbb{R}^{n}$ satisfies $\operatorname{det} \operatorname{Dg}(a) \neq 0$.
(a) Prove that in some open set containing a we can write $g=T \circ f_{n} \circ \cdots \circ f_{1}$, where f_{i} is of the form $f_{i}(x)=\left(x_{1}, \ldots, \phi_{i}(x), \ldots, x_{n}\right)$, and T is a linear map. Hint: Use the map T to replace g by a function whose derivative at a is the identity.
(b) Show that we can write $g=g_{n} \circ \cdots \circ g_{1}$ if and only if $D g(a)$ is a diagonal matrix.

Solution.

[^0]: ${ }^{1}$ You might enjoy computing the partial derivatives with Mathematica or Wolfram Alpha.

[^1]: ${ }^{2}$ In multivariable calculus, these two methods of computing volumes of revolution are typically called the "shell" and the "washer" methods.
 ${ }^{3}$ See pictures on the course webpage.

[^2]: ${ }^{4}$ We haven't given a formal treatment to exponential functions, although you probably know some basic properties about them. One rigorous definition is $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. (One can show that this series converges for every x.) From this definition one can deduce some familiar properties like $e^{0}=1$ and $e^{x} \cdot e^{y}=e^{x+y}$. A different characterization/definition of e^{x} is as the unique solution of the differential equation $f^{\prime}=f$ with initial condition $f(0)=1$ (c.f. Extra Credit 2).

