
Homework 7

Math 25b

Due March, 28 2018

Topics covered: the integral, integrability, measure 0

Instructions:

• The homework is divided into one part for each CA. You will submit each part to the corre-
sponding CA’s mailbox on the second floor of the science center.

• If your submission to any one CA takes multiple pages, then staple them together. A stapler
is available in the Cabot library in the science center.

• If you collaborate with other students, please mention this near the corresponding problems.

• Most problems from this assignment come from Spivak’s Calculus or Spivak’s Calculus on
manifolds or Munkres’ Analysis on manifolds. I’ve indicated this next to the problems (e.g.
Spivak, CoM 1-2 means problem 2 of chapter 1 from Calculus on Manifolds).

• Any result that we proved in class can be freely used on the homework. If there’s a result
that we haven’t stated in class that you want to use, then you have to prove it. If there’s a
result that we stated in class, but haven’t proven, it’s best to ask for clarification.
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Your Name Math 25b, Homework 7

1 For Ellen

Problem 1. Suppose f : Rn → R is continuous and that K ⊂ Rn is compact. Prove that for every
ε > 0 there exists δ > 0 so that for every x, y ∈ K, if |x − y| < δ then |f(x) − f(y)| < ε. This
property is called uniform continuity. Hint: Use continuity to construct an open cover by balls. It
might be helpful to shrink the radius of the balls before taking a finite subcover (compare to the proof
of HW3#5).1

Solution.

Problem 2 (Munkres 10-2). Let Q ⊂ Rn be a closed rectangle. Give a direct proof that if f : Q→ R
is continuous then f is integrable, i.e. show that if f is continuous, then for every ε > 0 there exists
a partition P such that U(f, P )− L(f, P ) < ε. Hint: use uniform continuity.

Solution.

Problem 3 (Spivak, CoM 3-3). Fix a closed rectangle A ⊂ Rn. In this exercise, you show that
the set of integrable functions f : A → R has the structure of a vector space. Let f, g : A → R be
integrable.

(a) For any partition P of A and subrectangle S, show that2

mS(f) +mS(g) ≤ mS(f + g) and MS(f + g) ≤MS(f) +MS(g)

and therefore

L(f, P ) + L(g, P ) ≤ L(f + g, P ) and U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Hint: To show mS(f)+mS(g) ≤ mS(f+g) is suffices to show mS(f)+mS(g) ≤ mS(f+g)+ε
for every ε > 0.

(b) Show that f + g is integrable and
∫
A f + g =

∫
A f +

∫
A g.

(c) For any constant c, show that
∫
A cf = c

∫
A f .

Solution.

1You could have solved this problem back when we learned about compactness. This exercise appears here
because it could be useful for other problems below. Also I don’t want you to forget about compactness! Note also
that Munkres’ proves this in Theorem 4.7. However, in a way, his argument is more complicated than necessary. I
want you to give a different proof.

2Here mS(f),MS(f) is shorthand for our notation minS(f),maxS(f) from class. Both Munkres and Spivak use
this abbreviated notation.
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Your Name Math 25b, Homework 7

2 For Natalia

Problem 4 (Spivak, CoM 3-1). Let f : [0, 1]× [0, 1]→ R be defined by

f(x, y) =

{
0 if 0 ≤ x < 1/2
1 if 1/2 ≤ x ≤ 1.

Show that f is integrable and
∫
I2 f = 1

2 .

Solution.

Problem 5 (Spivak, CoM 3-6). Fix a closed rectangle A ⊂ Rn. If f : A → R is integrable, show
that |f | is integrable and |

∫
A f | ≤

∫
A |f |.

Solution.

Problem 6 (Spivak, CoM 3-4). Fix a closed rectangle A ⊂ Rn. Let f : A → R and let P be a
partition of A. Show that f is integrable if and only if for each subrectangle S (of P ) the restriction
f |S is integrable, and that in this case 3 ∫

A
f =

∑
S

∫
S
f |S .

Solution.

3This is an example of a “local-to-global” principle: the integral over A can be computed by computing the integral
“locally” over subrectangles of A. This will appear again when we extend our definition of the integral to allow A to
be an open set.
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Your Name Math 25b, Homework 7

3 For Michele

Problem 7. Let Q ⊂ Rn be a closed rectangle, and assume f : Q→ R is integrable.

(a) Show that if m ≤ f(x) ≤M for all x ∈ Q, then m · v(Q) ≤
∫
Q f ≤M · v(Q).

(b) Show that if Q = [a, b], then F : [a, b]→ R defined by

F (x) =

∫
[a,x]

f

is continuous (even if f is not continuous!). Hint: You’ll want to use Problem 6.

Solution.

Problem 8 (Munkres 11-6). Let f : [a, b] → R. Show that the graph Gf = {(x, f(x)) : x ∈ [a, b]}
has measure 0 in R2. Hint: use uniform continuity.

Solution.

Problem 9 (Spivak, CoM 3-14). Fix a closed rectangle A ⊂ Rn. Show that if f, g : A → R are
integrable, so is f · g. Hint: don’t prove this using the definition.

Solution.
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Your Name Math 25b, Homework 7

4 For Charlie

Problem 10. Read Munkres §2, especially Theorem 2.4. It covers some linear-algebra facts that
we’ll need soon.

(a) Let A =

(
0 1
1 0

)
. Give elementary matrices E1, . . . , Ek of the form

(
1 c
0 1

)
or

(
1 0
c 1

)
or

(
λ 0
0 1

)
or

(
1 0
0 λ

)
(1)

so that Ek · · ·E1A = I. (This problem asks you to row-reduce the matrix A without using the
“swap two rows” move.)

(b) Write each of the linear maps (1) in coordinates as a function g(x, y) = (g1(x, y), g2(x, y))
and observe that each function either fixes the x coordinate or fixes the y coordinate.

Solution.

Problem 11. Let A ⊂ Rn be open and let g : A→ Rn be C1. Prove or give a counterexample: If
E ⊂ A has content 0, then g(E) has content 0. Hint: Note the relation with Munkres Lemma 18.1.

Solution.

Problem 12 (Spivak 3-10). (a) Does the Cantor set4 have measure 0? content 0?

(b) Give an example of a set X for which X has measure 0 but bd(X) does not have measure 0.
Hint: A certain exercise from a previous homework assignment might be helpful.

Solution.

4I can’t remember if we’ve seen this. This set is constructed in a way similar to the Sierpinski carpet. See
Wikipedia.
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