Homework 6

Math 25b

Due March, 212018

Topics covered: implicit function theorem, manifolds, Lagrange multipliers Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Most problems from this assignment come from Spivak's Calculus or Spivak's Calculus on manifolds or Munkres' Analysis on manifolds. I've indicated this next to the problems (e.g. Spivak, CoM 1-2 means problem 2 of chapter 1 from Calculus on Manifolds).
- Any result that we proved in class can be freely used on the homework. If there's a result that we haven't stated in class that you want to use, then you have to prove it. If there's a result that we stated in class, but haven't proven, it's best to ask for clarification.

1 For Natalia

Problem 1. Let $A \in M_{m \times n}(\mathbb{R})$ be an $m \times n$ matrix, which we also view as a linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Suppose that A has rank k, i.e. $\operatorname{dim} \operatorname{Im} A=k$. Show that A has $a(k \times k)$ sub-matrix (obtained by selecting k rows and k columns) that is invertible. Hint: You're going to need some linear algebra facts from last semester. If you want more suggestions, ask me.

Solution.

Problem 2 (Spivak, CoM 5-5). Prove that a d-dimensional vector subspace $W \subset \mathbb{R}^{n}$ is a ddimensional manifold directly using the definition of a manifold.

Solution.
Problem 3 (Munkres, 9-5). Let $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be C^{1} functions. In good situation (to be made precise below), one expects that each of the equations $f(x, y, z)=0$ and $g(x, y, z)=0$ represents a smooth surface in \mathbb{R}^{3} and that their intersection is a smooth curve. ${ }^{1}$ Show that if $p=(a, b, c)$ satisfies both equations and if $\partial(f, g) / \partial(x, y, z)(d)$ has rank 2, then near d, one can solve these equations for two of x, y, z in terms of the third, thus representing the solution set locally as a parameterized curve. Hint: implicit function theorem.

Solution.

[^0]
2 For Ellen

Problem 4 (Munkres, 9-6). Let $f: \mathbb{R}^{k+n} \rightarrow \mathbb{R}^{n}$ be C^{1}. Suppose $f(a)=0$ and $D f(a)$ has rank n. Show that if c is a point of \mathbb{R}^{n} sufficiently close to 0 , then the equation $f(x)=c$ has a solution. Hint: it might help to revisit the proof of the implicit function theorem or the manifold recognition theorem.

Solution.
Problem 5 (Hubbard, 3.1.1). For what values of c is the set $Z_{c}=\{(x, y): \sin (x+y)=c\} a$ smooth curve? What is the equation for the tangent line to such a curve at a point (u, v).

Solution.
Problem 6. (a) For what values of a and b are the sets $X_{a}=\left\{(x, y, z): x-y^{2}=a\right\}$ and $Y_{b}=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=b\right\} 2$-manifolds in \mathbb{R}^{3} ?
(b) For what values of a and b is the intersection $X_{a} \cap Y_{b}$ a 1-manifold? What geometric relation is there between X_{a} and Y_{b} for other values of a and b ?

Solution.

3 For Michele

Problem 7 (Hubbard, 3.1.16). Show that the set $X \subset \mathbb{R}^{3}$ given by $x^{3}+x y^{2}+y z^{2}+z^{3}=4$ is a smooth surface. What is the equation of the tangent plane to X at $(1,1,1)$?

Solution.

Problem 8 (Hubbard, 3.2.1). Consider the space X_{ℓ} of positions of a rod of length ℓ in \mathbb{R}^{3}, where one endpoint is constrained to the x-axis and the other is constrained to be on the unit sphere centered at the origin.
(a) Give equations for X_{ℓ} as a subset of \mathbb{R}^{4}, where the coordinates are the endpoint of the rod on the x-axis (t say) and the coordinates (x, y, z) of the other end of the rod.
(b) Show that near the point $(1+\ell, 1,0,0)$ the set X_{ℓ} is a manifold and give the equation of its tangent space.
(c) Show that for $\ell \neq 1, X_{\ell}$ is a manifold.

Solution.

Problem 9 (Hubbard, 3.2.2). Consider the space X of positions of a rod of length 2 in \mathbb{R}^{3} where one point is constrained to the sphere with equation $(x-1)^{2}+y^{2}+z^{2}=1$ and the other on the sphere of equation $(x+1)^{2}+y^{2}+z^{2}=1$.
(a) Give equations for X as a subset of \mathbb{R}^{6}. Use coordinates $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ for the endpoints of the rod on the first and second sphere, respectively.
(b) Show that near the point $(1,1,0,-1,1,0)$ the set X is a manifold and give the equation of its tangent space. What is the dimension of X near this point?
(c) Find the two points of X near which X is not a manifold. Give an informal explanation. ${ }^{2}$

Solution.

[^1]
4 For Charlie

Problem 10 (Hubbard 3.7.7). Find the minimum of the function $\phi(x, y, z)=x^{3}+y^{3}+z^{3}$ on the intersection of the planes $x+y+z=2$ and $x+y-z=3$.

Solution.

Problem 11 (Hubbard 3.7.9). What is the volume of the largest rectangular parallelepiped contained in the ellipsoid $x^{2}+4 y^{2}+9 z^{2} \leq 9$?

Solution.
Problem 12 (Hubbard 3.7.15). (a) Show that the set $X \subset M_{2}(\mathbb{R})$ of matrices with determinant 1 is a manifold. What is its dimension?
(b) Find a matrix in X that is closest to the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Hint: avoid minimizing a function with square roots.

Solution.

[^0]: ${ }^{1}$ In the simplest case, $f=0$ and $g=0$ are two planes in \mathbb{R}^{3} intersecting in a line.

[^1]: ${ }^{2}$ Note: the manifold recognition/implicit function theorem is not an if and only if, so you can't use this to prove that X is not a manifold at a point.

