Homework 6

Math 25b

Due March, 21 2018

Topics covered: implicit function theorem, manifolds, Lagrange multipliers

Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Most problems from this assignment come from Spivak's *Calculus* or Spivak's *Calculus on manifolds* or Munkres' *Analysis on manifolds*. I've indicated this next to the problems (e.g. Spivak, CoM 1-2 means problem 2 of chapter 1 from Calculus on Manifolds).
- Any result that we proved in class can be freely used on the homework. If there's a result that we haven't stated in class that you want to use, then you have to prove it. If there's a result that we stated in class, but haven't proven, it's best to ask for clarification.

1 For Natalia

Problem 1. Let $A \in M_{m \times n}(\mathbb{R})$ be an $m \times n$ matrix, which we also view as a linear map $\mathbb{R}^n \to \mathbb{R}^m$. Suppose that A has rank k, i.e. dim Im A = k. Show that A has a $(k \times k)$ sub-matrix (obtained by selecting k rows and k columns) that is invertible. Hint: You're going to need some linear algebra facts from last semester. If you want more suggestions, ask me.

Solution.

Problem 2 (Spivak, CoM 5-5). Prove that a d-dimensional vector subspace $W \subset \mathbb{R}^n$ is a d-dimensional manifold directly using the definition of a manifold.

Solution.

Problem 3 (Munkres, 9-5). Let $f, g : \mathbb{R}^3 \to \mathbb{R}$ be C^1 functions. In good situation (to be made precise below), one expects that each of the equations f(x, y, z) = 0 and g(x, y, z) = 0 represents a smooth surface in \mathbb{R}^3 and that their intersection is a smooth curve.¹ Show that if p = (a, b, c) satisfies both equations and if $\partial(f, g)/\partial(x, y, z)(d)$ has rank 2, then near d, one can solve these equations for two of x, y, z in terms of the third, thus representing the solution set locally as a parameterized curve. Hint: implicit function theorem.

Solution.

¹In the simplest case, f = 0 and g = 0 are two planes in \mathbb{R}^3 intersecting in a line.

2 For Ellen

Problem 4 (Munkres, 9-6). Let $f : \mathbb{R}^{k+n} \to \mathbb{R}^n$ be C^1 . Suppose f(a) = 0 and Df(a) has rank n. Show that if c is a point of \mathbb{R}^n sufficiently close to 0, then the equation f(x) = c has a solution. Hint: it might help to revisit the proof of the implicit function theorem or the manifold recognition theorem.

Solution.

Problem 5 (Hubbard, 3.1.1). For what values of c is the set $Z_c = \{(x, y) : \sin(x + y) = c\}$ a smooth curve? What is the equation for the tangent line to such a curve at a point (u, v).

Solution.

- **Problem 6.** (a) For what values of a and b are the sets $X_a = \{(x, y, z) : x y^2 = a\}$ and $Y_b = \{(x, y, z) : x^2 + y^2 + z^2 = b\}$ 2-manifolds in \mathbb{R}^3 ?
 - (b) For what values of a and b is the intersection $X_a \cap Y_b$ a 1-manifold? What geometric relation is there between X_a and Y_b for other values of a and b?

Solution.

3 For Michele

Problem 7 (Hubbard, 3.1.16). Show that the set $X \subset \mathbb{R}^3$ given by $x^3 + xy^2 + yz^2 + z^3 = 4$ is a smooth surface. What is the equation of the tangent plane to X at (1, 1, 1)?

Solution.

Problem 8 (Hubbard, 3.2.1). Consider the space X_{ℓ} of positions of a rod of length ℓ in \mathbb{R}^3 , where one endpoint is constrained to the x-axis and the other is constrained to be on the unit sphere centered at the origin.

- (a) Give equations for X_{ℓ} as a subset of \mathbb{R}^4 , where the coordinates are the endpoint of the rod on the x-axis (t say) and the coordinates (x, y, z) of the other end of the rod.
- (b) Show that near the point $(1 + \ell, 1, 0, 0)$ the set X_{ℓ} is a manifold and give the equation of its tangent space.
- (c) Show that for $\ell \neq 1$, X_{ℓ} is a manifold.

Solution.

Problem 9 (Hubbard, 3.2.2). Consider the space X of positions of a rod of length 2 in \mathbb{R}^3 where one point is constrained to the sphere with equation $(x-1)^2 + y^2 + z^2 = 1$ and the other on the sphere of equation $(x+1)^2 + y^2 + z^2 = 1$.

- (a) Give equations for X as a subset of \mathbb{R}^6 . Use coordinates (x_1, y_1, z_1) and (x_2, y_2, z_2) for the endpoints of the rod on the first and second sphere, respectively.
- (b) Show that near the point (1, 1, 0, -1, 1, 0) the set X is a manifold and give the equation of its tangent space. What is the dimension of X near this point?
- (c) Find the two points of X near which X is not a manifold. Give an informal explanation.²

Solution.

²Note: the manifold recognition/implicit function theorem is *not* an if and only if, so you can't use this to prove that X is not a manifold at a point.

4 For Charlie

Problem 10 (Hubbard 3.7.7). Find the minimum of the function $\phi(x, y, z) = x^3 + y^3 + z^3$ on the intersection of the planes x + y + z = 2 and x + y - z = 3.

Solution.

Problem 11 (Hubbard 3.7.9). What is the volume of the largest rectangular parallelepiped contained in the ellipsoid $x^2 + 4y^2 + 9z^2 \le 9$?

Solution.

- **Problem 12** (Hubbard 3.7.15). (a) Show that the set $X \subset M_2(\mathbb{R})$ of matrices with determinant 1 is a manifold. What is its dimension?
 - (b) Find a matrix in X that is closest to the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Hint: avoid minimizing a function with square roots.

Solution.