Homework 5

Math 25b

Due March, 72018

Topics covered: Derivatives, inverse function theorem, implicit function theorem
Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Most problems from this assignment come from Spivak's Calculus or Spivak's Calculus on manifolds or Munkres' Analysis on manifolds. I've indicated this next to the problems (e.g. Spivak, CoM 1-2 means problem 2 of chapter 1 from Calculus on Manifolds).
- Any result that we proved in class can be freely used on the homework. If there's a result that we haven't stated in class that you want to use, then you have to prove it. If there's a result that we stated in class, but haven't proven, it's best to ask for clarification.

1 For Ellen

Problem 1 (Munkres, 7-3). Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by the equation

$$
F(x, y)=f(x, y, g(x, y))
$$

(a) Find DF in terms of the partials of f and g.
(b) If $F(x, y)=0$ for all (x, y), find $D_{1} g$ and $D_{2} g$ in terms of the partials of f.

Solution.
Problem 2 (Munkres, 8-1). Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by the equation

$$
f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)
$$

(a) Show that f is injective on $A=\{(x, y): x>0\}$. Hint. If $f(x, y)=f(a, b)$, then $|f(x, y)|=$ $|f(a, b)|$.
(b) What is the set $B=f(A)$.
(c) If g is the inverse function, find $D g(0,1) .{ }^{1}$

Solution.

[^0]
2 For Charlie

Problem 3 (Munkres, 8-3). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be given by the equation $f(x)=|x|^{2} \cdot x$. Show that f has derivative of all orders and that f carries the unit ball $B_{1}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$ to itself in an injective fashion. Show however that the inverse function is not differentiable at 0 .

Solution.
Problem 4 (Munkres, 8-4). This exercise is a reality check of your concrete understanding of inverse function theorem (and chain rule). Define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by

$$
g(x, y)=\left(2 y e^{2 x}, x e^{y}\right) \quad \text { and } \quad f(x, y)=\left(3 x-y^{2}, 2 x+y, x y+y^{3}\right) .
$$

(a) Show that there is a neighborhood of $(0,1)$ that g carries in a bijective fashion to a neighborhood of $(2,0)$.
(b) Find $D\left(f \circ g^{-1}\right)$ at $(2,0)$.

Solution.

3 For Michele

Problem 5 (Munkres, 8-5). Let A be open in \mathbb{R}^{n}, and let $f: A \rightarrow \mathbb{R}^{n}$ be C^{1}. Assume $D f(x)$ is invertible for $x \in A$. Show that $B=f(A)$ is open, even if f is not injective. Hint: You have to find the place in the proof from class where we used injectivity in a nontrivial way!

Solution.

Problem 6 (Spivak, CoM 2-37). (a) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a continuously differentiable function. Show that f is not 1-1. Hint: If, for example, $D_{1} f(x, y) \neq 0$ for all (x, y) in some open set A, consider $g: A \rightarrow \mathbb{R}^{2}$ defined by $g(x, y)=(f(x, y), y)$.
(b) Generalize this result to the case of a continuously differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $m<n$. ${ }^{2}$

Solution.

Problem 7 (Spivak, CoM 2-38). Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$. Show that $\operatorname{det} f^{\prime}(x, y) \neq 0$ for all (x, y) but f is not 1-1.

Solution.

[^1]
4 For Natalia

Problem 8 (2-39). Use the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}\frac{x}{2}+x^{2} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

to show that continuity of the derivative cannot be eliminated from the hypothesis of Theorem 2-11 (the inverse function theorem). Hint. Show that f is differentiable, but f^{\prime} is not continuous, and that f is not injective in any neighborhood of 0 . The last step is the tricky part - it might help to remember what $f^{\prime}, f^{\prime \prime}$ tell us about f.

Solution.
Problem 9 (Spivak, CoM 2-40). Use the implicit function theorem to re-do Problem 2-15(c). (It should be less painful this time!) ${ }^{3}$

Solution.

[^2]
[^0]: ${ }^{1}$ After you do this problem, it's worth thinking about how much simpler life was last semester when we were dealing with linear functions!

[^1]: ${ }^{2}$ This problem is related to the Implicit Function Theorem. It can be proved using this theorem, but I'd like you to not quote it. It might be helpful to read the proof of the implicit function theorem in Munkres. Additional information/intuition available at office hours.

[^2]: ${ }^{3}$ If you set up the implicit function theorem in the right way, this will be extremely painless.

