Homework 4

Math 25b

Due February, 212018

Topics covered: Mean value theorem, derivatives in higher dimensions
Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Most problems from this assignment come from Spivak's Calculus or Spivak's Calculus on manifolds or Munkres' Analysis on manifolds. I've indicated this next to the problems (e.g. Spivak, CoM 1-2 means problem 2 of chapter 1 from Calculus on Manifolds).
- Any result that we proved in class can be freely used on the homework. If there's a result that we haven't stated in class that you want to use, then you have to prove it. If there's a result that we stated in class, but haven't proven, it's best to ask for clarification.

1 For Michele

Problem 1 (Spivak, CoM 2-1). Give an $\epsilon-\delta$ proof that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $a \in \mathbb{R}^{n}$, then it is continuous at a. Hint: use problem 1-10. ${ }^{1}$

Solution.

Problem 2 (Spivak, C 11-26). Suppose $f^{\prime}(x) \geq M$ for all $x \in[0,1]$. Show that there is an interval of length $\frac{1}{4}$ on which $|f| \geq M / 4$. Hint: use MVT.

Solution.

Problem 3 (Spivak, C 11-57). In this problem you prove that (usually) $(x+y)^{n} \neq x^{n}+y^{n}$. The faulty assertion that $(x+y)^{n}=x^{n}+y^{n}$ is sometimes called the "freshman dream"."
(a) Assume $y \neq 0$ and n is even. Prove that $x^{n}+y^{n}=(x+y)^{n}$ only when $x=0$. Hint: Suppose the statement holds for some $x_{0} \neq 0$ and use Rolle's theorem.
(b) Prove that if $y \neq 0$ and n is odd, then $x^{n}+y^{n}=(x+y)^{n}$ only if $x=0$ or $x=-y$. Hint: What does Rolle's say in this case? Why is this good enough?

Solution.

[^0]
2 For Charlie

Problem 4 (Spivak, CoM 2-29). Recall from class that for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we define the directional derivative of f at a in the direction v by

$$
D_{v} f(a)=\lim _{t \rightarrow 0} \frac{f(a+t v)-f(a)}{t}
$$

if the limit exists.
(a) Show that $D_{c v} f(a)=c D_{v} f(a)$ for $c \in \mathbb{R}$.
(b) If f is differentiable at a, show that $D_{v} f(a)=D f(a)(v)$ and therefore $D_{u+v} f(a)=D_{u} f(a)+$ $D_{v} f(a)$. Hint: part (a) might be helpful.

Solution.

Problem 5 (Spivak, CoM 2-4, 2-5, 2-30). Let g be a continuous real-valued function on the unit circle $S^{1}=\left\{z \in \mathbb{R}^{2}:|z|=1\right\}$ such that $g(0,1)=g(1,0)=0$ and $g(-z)=-g(z)$. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(z)= \begin{cases}|z| \cdot g\left(\frac{z}{|z|}\right) & z \neq 0 \\ 0 & z=0\end{cases}
$$

(a) Assume $z \in \mathbb{R}^{2}$ and $|z|=1$. Define $h: \mathbb{R} \rightarrow \mathbb{R}$ by $h(t)=f(t z)$, show that h is differentiable.
(b) Show that $D_{v} f(0)$ exists for all v (and find it explicitly).
(c) Show that f is not differentiable at 0 unless $g=0$.
(d) Observe that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x|y|}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq 0 \\ 0 & (x, y)=0\end{cases}
$$

is a function of the kind considered in (a), so that f is not differentiable at (0,0).
Solution.
Problem 6 (Spivak, CoM 2-7). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function such that $|f(x)| \leq|x|^{2}$. Show that f is differentiable at 0. Hint: First guess the derivative.

Solution.

3 For Ellen

Problem 7 (Spivak, CoM 2-13). Define $I P: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $I P(x, y)=\langle x, y\rangle$ (the standard inner product).
(a) Find $D(I P)(a, b)$.
(b) If $f, g: \mathbb{R} \rightarrow \mathbb{R}^{n}$ are differentiable and $h: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $h(t)=\langle f(t), g(t)\rangle$, show that

$$
h^{\prime}(a)=\left\langle g(a), f^{\prime}(a)\right\rangle+\left\langle f(a), g^{\prime}(a)\right\rangle .
$$

(c) If $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is differentiable and $|f(t)|=1$ for all t, show that $\left\langle f(t), f^{\prime}(t)\right\rangle=0$. ${ }^{3}$

Solution.
Problem 8 (Spivak, CoM 2-14). Let $E_{i}, i=1, \ldots, k$ be Euclidean spaces of various dimensions. A function $f: E_{1} \times \cdots \times E_{k} \rightarrow \mathbb{R}^{p}$ is called multilinear if it is linear in each coordinate, i.e. if for each i and choice of $x_{j} \in E_{j}, j \neq i$, the function $g: E_{i} \rightarrow \mathbb{R}^{p}$ defined by $g(x)=f\left(x_{1}, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_{k}\right)$ is linear.
(a) If f is multilinear and $i \neq j$, show that for $h=\left(h_{1}, \ldots, h_{k}\right)$, with $h_{\ell} \in E_{\ell}$, we have

$$
\lim _{h \rightarrow 0} \frac{\left|f\left(a_{1}, \ldots, h_{i}, \ldots, h_{j}, \ldots, a_{k}\right)\right|}{|h|}=0
$$

Hint: If $g(x, y)=f\left(a_{1}, \ldots, x, \ldots, y, \ldots, a_{k}\right)$, then g is bilinear, so you can reduce to showing that for a bilinear map $g: E \times F \rightarrow \mathbb{R}$ one has $\lim _{h \rightarrow 0} \frac{\left|g\left(h_{1}, h_{2}\right)\right|}{|h|}=0$.
(b) Prove that

$$
D f\left(a_{1}, \ldots, a_{k}\right)\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} f\left(a_{1}, \ldots, a_{i-1}, x_{i}, a_{i+1}, \ldots, a_{k}\right)
$$

Solution.

[^1]
4 For Natalia

Problem 9 (Spivak, CoM 2-15). Regard an $n \times n$ matrix as a point in the n-fold product $\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}$ by considering each column as a vector in \mathbb{R}^{n}.
(a) Prove that det: $\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable and

$$
D(\operatorname{det})\left(a_{1}, \ldots, a_{n}\right)\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \operatorname{det}\left(a_{1}|\cdots| x_{i}|\cdots| a_{n}\right) .
$$

(b) If $a_{i j}: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable and $f(t)=\operatorname{det}\left(a_{i j}(t)\right)$, show that

$$
f^{\prime}(t)=\sum_{j=1}^{n} \operatorname{det}\left(\begin{array}{ccccc}
a_{11}(t) & \cdots & a_{1 j}^{\prime}(t) & \cdots & a_{1 n}(t) \\
\vdots & & \vdots & & \vdots \\
a_{n 1}(t) & \cdots & a_{n j}^{\prime}(t) & \cdots & a_{n n}(t)
\end{array}\right)
$$

(c) If $\operatorname{det}\left(a_{i j}(t)\right) \neq 0$ for all t and $b_{1}, \ldots, b_{n}: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable, let $s_{1}, \ldots, s_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be the functions such that $s_{1}(t), \ldots, s_{n}(t)$ are the solutions of the equations

$$
\sum_{j=1}^{n} a_{i j}(t) s_{j}(t)=b_{i}(t) \quad i=1, \ldots, n
$$

Show that s_{j} is differentiable and find $s_{j}^{\prime}(t)$.

Solution.

Problem 10 (Spivak, CoM 2-10). Find $D f(x, y)$ for the following:
(a) $f(x, y)=\sin (x \sin y)$
(b) $f(x, y)=\sin (x y)$
(c) $f(x, y)=(\sin (x y), \sin (x \sin y))$

Solution.

Problem 11 (Spivak, CoM 2-24). Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}x y^{\frac{x^{2}-y^{2}}{x^{2}+y^{2}}} & (x, y) \neq 0 \\ 0 & (x, y)=0\end{cases}
$$

(a) Show that $D_{2} f(x, 0)=x$ for all x and $D_{1} f(0, y)=-y$ for all y. Hint: You don't actually have to compute too much to solve this part.
(b) Show that $D_{1,2} f(0,0) \neq D_{2,1} f(0,0)$.

Solution.

[^0]: ${ }^{1}$ Munkres Ch. 2 Thm. 5.2 gives a proof using algebra of limits, but I want you to give an $\epsilon-\delta$ proof. It's good practice.
 ${ }^{2}$ Presumably referring to freshmen at a less reputable institution, e.g. Yale.

[^1]: ${ }^{3}$ Later we'll use this exercise to compute the tangent space of the unit sphere $S^{n-1}=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$.

