Homework 2

Math 25b

Due February, 72018

Topics covered: continuity, continuity theorems, least upper bound property, metric spaces Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Most problems from this assignment come from Spivak's Calculus or Spivak's Calculus on manifolds or Munkres' Analysis on manifolds. I've indicated this next to the problems (e.g. Spivak, CoM 1-2 means problem 2 of chapter 1 from Calculus on Manifolds).

1 For Ellen

Problem 1 (Spivak, CoM 1-5).

(a) Show that for $x, y \in \mathbb{R}^{n}$, one has

$$
||x|-|y|| \leq|x-y| .
$$

This is called the reverse triangle inequality. Hint: use the triangle inequality.
(b) Conclude that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous, then $|f|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $|f|(x)=|f(x)|$ is continuous.

Solution.
Problem 2 (Spivak, CoM 1-10 and 1-25). Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map.
(a) Show that there is a number M such that $|T h| \leq M|h|$ for $h \in \mathbb{R}^{n}$. Hint: Estimate $|T h|$ in terms of $|h|$ and the entries in the matrix of T.
(b) Show that T is continuous.

Solution.
Problem 3 (Spivak, C 7-10 and 7-11).
(a) Suppose f, g are continuous on $[a, b]$ and that $f(a)<g(a)$, but $f(b)>g(b)$. Prove that $f(c)=g(c)$ for some $c \in[a, b]$.
(b) Suppose f is continuous on $[0,1]$ and $0 \leq f(x) \leq 1$ for all $x \in[0,1]$. Prove that $f(x)=x$ for some number x. This is a special case of the Brouwer fixed point theorem.

Hint: if your proofs are not very short, then they are not the right ones.
Solution.

2 For Natalia

Problem 4 (Spivak, C 7-13). Consider $f:\left[-\frac{2}{\pi}, \frac{2}{\pi}\right] \rightarrow \mathbb{R}$ defined by $f(x)= \begin{cases}\sin (1 / x) & x \neq 0 \\ 0 & x=0 .\end{cases}$
(a) Show that f satisfies the conclusion of the Intermediate Value Theorem (i.e. for any d with $f(a)<d<f(b)$, there exists $c \in[a, b]$ with $f(c)=d)$. Does f satisfy the hypothesis of IVT?
(b) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ satisfies the conclusion of IVT and that f takes on each value only once (i.e. f is injective). Prove that f is continuous. Hint: It might help to show that f is either increasing or decreasing (recall that f is increasing if $x<y$ implies $f(x)<f(y)$).

Solution.
Problem 5 (Spivak, C 7-20). Prove that there does not exist a continuous function on \mathbb{R} that takes on every value exactly twice. Is the same statement true if we replace twice by thrice?

Solution.

Problem 6 (Spivak, C 7-16). Let $p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ be a polynomial $p \in \operatorname{Poly}(\mathbb{R})$. Prove that there is a number y so that $|p(y)| \leq|p(x)|$ for all $x \in \mathbb{R}$. Hint: if you're stuck, it may help to read the proof of Theorem 10 in Chapter 7 of Spivak's Calculus.

Solution.

3 For Charlie

Problem 7 (Spivak, C 8-5). In this problem, $x, y \in \mathbb{R} .^{1}$
(a) Suppose $y-x>1$. Prove that there is an integer k such that $x<k<y$. Hint: let ℓ be the smallest integer less than x and consider $\ell+1$.
(b) Suppose $x<y$. Prove that there is a rational number r such that $x<r<y$. Hint: Find $n \in \mathbb{N}$ so that $n(y-x)>1$.
(c) Suppose $r<s$ are rational numbers. Prove that there is an irrational number between r and s. Hint: You may find it useful that $\sqrt{2}$ is irrational.
(d) Suppose $x<y$. Prove that there is an irrational number between x and y.
A subset $A \subset \mathbb{R}$ is called dense if every open interval contains an element of A. The problem above shows that the rational numbers \mathbb{Q} and the irrational numbers $\mathbb{R} \backslash \mathbb{Q}$ are both dense in \mathbb{R}.

Solution.
Problem 8 (Spivak, C 8-6 and 8-7).
(a) Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f=0$ for all x in a dense set A, then $f(x)=0$ for all $x .{ }^{2}$
(b) Use (a) to prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(x+y)=f(x)+f(y)$ for all x, y then f is linear, i.e. there exists c so that $f(x)=c x$ for all $x .^{3}$

Solution.

Problem 9 (Spivak, C 8-8). Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that $f(y) \leq f(z)$ whenever $y<z$ (such a function is sometimes called nondecreasing). Prove that $\lim _{x \rightarrow a-} f(x)$ and $\lim _{x \rightarrow a+} f(x)$ both exist. Hint: first decide what each limit should equal.

Solution.

[^0]
4 For Michele

Definition. Let X be a set. A metric on X is a function $d: X \times X \rightarrow \mathbb{R}$ that satisfies
(i) (positivity) $d \geq 0$ and $d(x, y)=0$ if and only if $x=y$,
(ii) (symmetry) $d(x, y)=d(y, x)$ for each $x, y \in X$, and
(iii) (triangle inequality) $d(x, z) \leq d(x, y)+d(y, z)$ for each $x, y, z \in X$.

The pair (X, d) is called a metric space. Given a metric space (X, d), a point $x \in X$, and $r>0$, we denote the open d-ball around x of radius r

$$
B_{r}(x, d)=\{x \in X: d(y, x)<r\} .
$$

Last quarter, we showed that if $X=\mathbb{R}^{n}$ and $\langle\cdot, \cdot\rangle: X \times X \rightarrow \mathbb{R}$ is the standard (or any) inner product, then

$$
d(x, y):=\|x-y\|=\langle x-y, x-y\rangle^{1 / 2}=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}
$$

is a metric on X. We will call this the norm metric on \mathbb{R}^{n}.
There are many other metrics on \mathbb{R}^{n}. Another interesting metric is the sup metric. It is defined as

$$
d^{\prime}(x, y)=\sup _{i=1, \ldots, n}\left|x_{i}-y_{i}\right|
$$

In other words, $d^{\prime}(x, y)$ is the maximum value of the finite set $\left\{\left|x_{1}-y_{1}\right|, \ldots,\left|x_{n}-y_{n}\right|\right\}$. You should convince yourself that d^{\prime} is a metric on \mathbb{R}^{n}. Note that the sets $B_{r}\left(x, d^{\prime}\right)$ are open rectangles! The metric d^{\prime} is sometimes also called the taxi-cab metric (why does this make sense?). With this naming convention, it would make sense to call the metric d the as-the-crow-flies metric.

Problem 10. Fix $n \geq 1$. Consider \mathbb{R}^{n} with the norm metric d and the sup metric δ. Show that there are constants $0<K, L$ so that $K \cdot d^{\prime}(x, y) \leq d(x, y) \leq L \cdot d^{\prime}(x, y)$ for all $x, y \in \mathbb{R}^{n}$. Use this to conclude that every d-metric ball around x contains a d^{\prime}-metric ball around x and vice versa.

Solution.

Problem 11. Prove the following are equivalent: ${ }^{4}$
(i) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous.
(ii) For every open set U, the preimage $f^{-1}(U)=\left\{x \in \mathbb{R}^{n}: f(x) \in U\right\}$ is open.

Relevant side question: How do you re-phrase the definition of continuity in terms of metric balls? Remark: This problem is similar to but slightly different from Theorem 1-8 in Spivak's Calculus on Manifolds.

Solution.

[^1]
[^0]: ${ }^{1}$ For this problem, at several points, you might think a certain statement is "obvious," but it's useful to remember that there are ordered fields that don't satisfy the LUB property, where the set of natural numbers is bounded(!) and where $0 \neq \inf \left\{\frac{1}{n}: n \in \mathbb{N}\right\}(!)$.
 ${ }^{2}$ Compare with Thomae's function.
 ${ }^{3}$ There exist functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy $f(x+y)=f(x)+f(y)$ for all x, y, but are not continuous, but they are not easy to construct.

[^1]: ${ }^{4}$ Since these statements are equivalent, we could have defined continuity with the second definition. The benefit to doing this is that definition (ii) can be made for topological spaces, a class of spaces more general than metric spaces. There are other benefits to definition (ii), as we will eventually see.

