Homework 9

Math 25a

Due November 30, 2018

Topics covered (lectures 18-19): inner products, orthogonality and Gram-Schmidt Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B. 4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Laura Z.

Problem 1 (Axler 6.A.12). (a) Use Cauchy-Schwarz to prove that $(a c+b d)^{2} \leq\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)$ for any real numbers a,b,c,d. (You could also solve this by expanding both sides, but use Cauchy-Schwarz ${ }^{1}$ to get familiar with how it works.)
(b) Fix $n \geq 1$. Prove that $\left(x_{1}+\cdots+x_{n}\right)^{2} \leq n\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)$ for all $x_{1}, \ldots, x_{n} \in \mathbb{R}$. Hint: whatever you do, for the love of algebra, do not expand both sides. Instead use Cauchy-Schwarz.

Solution.

Problem 2 (Axler 6.B.1). Fix $t \in \mathbb{R}$. Let $u_{t}=(\cos t, \sin t)$ and $v_{t}=(-\sin t, \cos t)$ and $w_{t}=$ $(\sin t,-\cos t)$. Show that $\left(u_{t}, v_{t}\right)$ and $\left(u_{t}, w_{t}\right)$ are each orthonormal bases of \mathbb{R}^{2}. Show that every orthonormal basis of \mathbb{R}^{2} has this form, i.e. for any orthonormal basis z_{1}, z_{2}, there is $t \in \mathbb{R}$ so that $\left(z_{1}, z_{2}\right)$ is either equal to $\left(u_{t}, v_{t}\right)$ or $\left(u_{t}, w_{t}\right)$.

Solution.

Problem 3 (Axler 6.A.5). Suppose $T \in L(V)$ is such that $|T v| \leq|v|$ for every $v \in V$. Prove that $T-\sqrt{2} I$ is invertible.

Solution.

[^0]
2 For Beckham M.

Problem 4 (Treil 5.3.10). On Poly (\mathbb{R}), consider the inner product $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$. Apply Gram-Schmidt to the basis $1, x, x^{2}, x^{3}$ to produce an orthonormal basis ${ }^{2}$ for Poly $\mathcal{P}_{3}(\mathbb{R})$. Please do this without a computer ${ }^{3}$ and show your steps. ${ }^{4}$

Solution.

Problem 5 (Axler 6.A.7). Let V be an inner product space. Fix $u, v \in V$. Show that $|a u+b v|=$ $|b u+a v|$ for all $a, b \in \mathbb{R}$ if and only if $|u|=|v|$.

Solution.

Problem 6 (Axler 6.B.10). Suppose V is a real inner product space and v_{1}, \ldots, v_{m} is a linearly independent list of vectors in V. Prove that there are exactly 2^{m} orthonormal lists e_{1}, \ldots, e_{m} of vectors such that in V such that

$$
\operatorname{span}\left(v_{1}, \ldots, v_{j}\right)=\operatorname{span}\left(e_{1}, \ldots, e_{j}\right)
$$

for each $j=1, \ldots, m$.
Solution.

[^1]
3 For Davis L.

Problem 7 (Treil 5.3.8). Let V be a real inner product space of dimension n. Let $E \subset V$ be subspace of dimension r, and let $P: V \rightarrow V$ be the orthogonal projection onto E. Find the eigenvalues and eigenvectors of P, and determine the algebraic and geometric multiplicities of each eigenvalue.

Solution.

Problem 8 (Axler 6.B.9). What happens when Gram-Schmidt is applied to a list of vectors that is not linearly independent?

Solution.

Problem 9. Fix $A \in M_{n \times m}(F)$. Give an alternate proof ${ }^{5}$ of the rank theorem $\operatorname{rank}(A)=\operatorname{rank}\left(A^{t}\right)$ as follows.
(a) Show that the span of the rows of A is the orthogonal complement to ker A. Deduce that $m=\operatorname{dim} \operatorname{rank}\left(A^{t}\right)+\operatorname{dim} \operatorname{ker} A$.
(b) Use (a) together with the rank-nullity theorem to prove the rank theorem.

Solution.

[^2]
4 For Joey F.

Problem 10. If $A=\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)$, then we can define

$$
\langle\cdot, \cdot\rangle: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

by $\langle v, w\rangle=v^{t} A w$. This will always be symmetric and bilinear, but not always positive definite. Show that it's positive definite if and only if $a, d>0$ and $\operatorname{det} A>0$. Hint: complete the square.

Solution.

Problem 11 (Axler 6.A.19,21). Let V be a vector space. We say a norm $|\cdot|: V \rightarrow \mathbb{R}$ satisfies the parallelogram law if

$$
|x+y|^{2}+|x-y|^{2}=2|x|^{2}+2|y|^{2}
$$

for every $x, y \in V$. Here you'll prove that if a norm satisfies the parallelogram law, then it comes from an inner product. ${ }^{6}$
(a) Assume V is an inner product space. Show that

$$
\langle x, y\rangle=\frac{|x+y|^{2}-|x-y|^{2}}{4}
$$

for all $x, y \in V$.
(b) Let $|\cdot|: V \rightarrow \mathbb{R}$ be a norm. Show that if $|\cdot|$ satisfies the parallelogram law, then there exists an inner product $\langle\cdot, \cdot\rangle$ on V so that $|x|=\langle x, x\rangle^{1 / 2}$ for every $x \in V$. Hint: first you need to define $\langle\cdot, \cdot\rangle$; then you need to check that $\langle v, v\rangle=|v|^{2}$ for every v; and then you need to show that $\langle\cdot, \cdot\rangle$ is an inner product.

Solution.

Problem 12 (Axler 6.A.31). Use inner products to prove Apollonius's identity: in a triangle with sides of length a, b, c, let d be the length of the line segment from the midpoint of the side of length c to the opposite vertex. Then $a^{2}+b^{2}=\frac{1}{2} c^{2}+2 d^{2}$.

Does this look familiar?

[^3]
Solution.

[^0]: ${ }^{1}$ On what vector space with what inner product?!

[^1]: ${ }^{2}$ The polynomials you get are called Legendre polynomials.
 ${ }^{3}$ If you like, check your answer with Mathematica.
 ${ }^{4}$ To make this computation easier, it may be helpful to observe that $\int_{-1}^{1} x^{2 k+1}=0$ for any $k \geq 0$ because odd polynomials are odd functions.

[^2]: ${ }^{5}$ It would be good to go back and remember how we proved the rank theorem before.

[^3]: ${ }^{6}$ We proved the converse in class, so altogether we see that a norm comes from an inner product if and only if it satisfies the parallelogram law.

