
Homework 9

Math 25a

Due November 30, 2018

Topics covered (lectures 18-19): inner products, orthogonality and Gram-Schmidt

Instructions:

• The homework is divided into one part for each CA. You will submit each part to the corre-
sponding CA’s mailbox on the second floor of the science center.

• If your submission to any one CA takes multiple pages, then staple them together. A stapler
is available in the Cabot library in the science center.

• If you collaborate with other students, please mention this near the corresponding problems.

• Some problems from this assignment come from the 3rd edition of Axler’s book. I’ve indicated
this next to the problems. For example, Axler 1.B.4 means problem 4 from the exercises to
Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure
you do the problem as listed in the assignment.
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Your Name Math 25a, Homework 9

1 For Laura Z.

Problem 1 (Axler 6.A.12). (a) Use Cauchy–Schwarz to prove that (ac+bd)2 ≤ (a2+b2)(c2+d2)
for any real numbers a, b, c, d. (You could also solve this by expanding both sides, but use
Cauchy–Schwarz1 to get familiar with how it works.)

(b) Fix n ≥ 1. Prove that (x1+· · ·+xn)2 ≤ n(x21+· · ·+x2n) for all x1, . . . , xn ∈ R. Hint: whatever
you do, for the love of algebra, do not expand both sides. Instead use Cauchy–Schwarz.

Solution.

Problem 2 (Axler 6.B.1). Fix t ∈ R. Let ut = (cos t, sin t) and vt = (− sin t, cos t) and wt =
(sin t,− cos t). Show that (ut, vt) and (ut, wt) are each orthonormal bases of R2. Show that every
orthonormal basis of R2 has this form, i.e. for any orthonormal basis z1, z2, there is t ∈ R so that
(z1, z2) is either equal to (ut, vt) or (ut, wt).

Solution.

Problem 3 (Axler 6.A.5). Suppose T ∈ L(V ) is such that |Tv| ≤ |v| for every v ∈ V . Prove that
T −
√

2I is invertible.

Solution.

1On what vector space with what inner product?!
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Your Name Math 25a, Homework 9

2 For Beckham M.

Problem 4 (Treil 5.3.10). On Poly3(R), consider the inner product 〈p, q〉 =
∫ 1
−1 p(x)q(x)dx. Apply

Gram-Schmidt to the basis 1, x, x2, x3 to produce an orthonormal basis2 for Poly3(R). Please do
this without a computer3 and show your steps.4

Solution.

Problem 5 (Axler 6.A.7). Let V be an inner product space. Fix u, v ∈ V . Show that |au + bv| =
|bu + av| for all a, b ∈ R if and only if |u| = |v|.

Solution.

Problem 6 (Axler 6.B.10). Suppose V is a real inner product space and v1, . . . , vm is a linearly
independent list of vectors in V . Prove that there are exactly 2m orthonormal lists e1, . . . , em of
vectors such that in V such that

span(v1, . . . , vj) = span(e1, . . . , ej)

for each j = 1, . . . ,m.

Solution.

2The polynomials you get are called Legendre polynomials.
3If you like, check your answer with Mathematica.
4To make this computation easier, it may be helpful to observe that

∫ 1

−1
x2k+1 = 0 for any k ≥ 0 because odd

polynomials are odd functions.
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Your Name Math 25a, Homework 9

3 For Davis L.

Problem 7 (Treil 5.3.8). Let V be a real inner product space of dimension n. Let E ⊂ V be subspace
of dimension r, and let P : V → V be the orthogonal projection onto E. Find the eigenvalues and
eigenvectors of P , and determine the algebraic and geometric multiplicities of each eigenvalue.

Solution.

Problem 8 (Axler 6.B.9). What happens when Gram–Schmidt is applied to a list of vectors that
is not linearly independent?

Solution.

Problem 9. Fix A ∈Mn×m(F ). Give an alternate proof 5 of the rank theorem rank(A) = rank(At)
as follows.

(a) Show that the span of the rows of A is the orthogonal complement to kerA. Deduce that
m = dim rank(At) + dim kerA.

(b) Use (a) together with the rank-nullity theorem to prove the rank theorem.

Solution.

5It would be good to go back and remember how we proved the rank theorem before.
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Your Name Math 25a, Homework 9

4 For Joey F.

Problem 10. If A =

(
a b
b d

)
, then we can define

〈·, ·〉 : R2 → R2 → R

by 〈v, w〉 = vtAw. This will always be symmetric and bilinear, but not always positive definite.
Show that it’s positive definite if and only if a, d > 0 and detA > 0. Hint: complete the square.

Solution.

Problem 11 (Axler 6.A.19,21). Let V be a vector space. We say a norm | · | : V → R satisfies the
parallelogram law if

|x + y|2 + |x− y|2 = 2|x|2 + 2|y|2

for every x, y ∈ V . Here you’ll prove that if a norm satisfies the parallelogram law, then it comes
from an inner product.6

(a) Assume V is an inner product space. Show that

〈x, y〉 =
|x + y|2 − |x− y|2

4

for all x, y ∈ V .

(b) Let | · | : V → R be a norm. Show that if | · | satisfies the parallelogram law, then there exists
an inner product 〈·, ·〉 on V so that |x| = 〈x, x〉1/2 for every x ∈ V . Hint: first you need to
define 〈·, ·〉; then you need to check that 〈v, v〉 = |v|2 for every v; and then you need to show
that 〈·, ·〉 is an inner product.

Solution.

Problem 12 (Axler 6.A.31). Use inner products to prove Apollonius’s identity: in a triangle with
sides of length a, b, c, let d be the length of the line segment from the midpoint of the side of length
c to the opposite vertex. Then a2 + b2 = 1

2c
2 + 2d2.

Scanned by CamScannerDoes this look familiar?
6We proved the converse in class, so altogether we see that a norm comes from an inner product if and only if it

satisfies the parallelogram law.

5



Your Name Math 25a, Homework 9

Solution.
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