# Homework 9

#### Math $25\mathrm{a}$

Due November 30, 2018

Topics covered (lectures 18-19): inner products, orthogonality and Gram-Schmidt Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B.4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

### 1 For Laura Z.

- **Problem 1** (Axler 6.A.12). (a) Use Cauchy–Schwarz to prove that  $(ac+bd)^2 \leq (a^2+b^2)(c^2+d^2)$ for any real numbers a, b, c, d. (You could also solve this by expanding both sides, but use Cauchy–Schwarz<sup>1</sup> to get familiar with how it works.)
  - (b) Fix  $n \ge 1$ . Prove that  $(x_1 + \dots + x_n)^2 \le n(x_1^2 + \dots + x_n^2)$  for all  $x_1, \dots, x_n \in \mathbb{R}$ . Hint: whatever you do, for the love of algebra, <u>do not</u> expand both sides. Instead use Cauchy–Schwarz.

Solution.

**Problem 2** (Axler 6.B.1). Fix  $t \in \mathbb{R}$ . Let  $u_t = (\cos t, \sin t)$  and  $v_t = (-\sin t, \cos t)$  and  $w_t = (\sin t, -\cos t)$ . Show that  $(u_t, v_t)$  and  $(u_t, w_t)$  are each orthonormal bases of  $\mathbb{R}^2$ . Show that every orthonormal basis of  $\mathbb{R}^2$  has this form, i.e. for any orthonormal basis  $z_1, z_2$ , there is  $t \in \mathbb{R}$  so that  $(z_1, z_2)$  is either equal to  $(u_t, v_t)$  or  $(u_t, w_t)$ .

Solution.

**Problem 3** (Axler 6.A.5). Suppose  $T \in L(V)$  is such that  $|Tv| \leq |v|$  for every  $v \in V$ . Prove that  $T - \sqrt{2I}$  is invertible.

Solution.

<sup>&</sup>lt;sup>1</sup>On what vector space with what inner product?!

### 2 For Beckham M.

**Problem 4** (Treil 5.3.10). On  $Poly_3(\mathbb{R})$ , consider the inner product  $\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)dx$ . Apply Gram-Schmidt to the basis  $1, x, x^2, x^3$  to produce an orthonormal basis<sup>2</sup> for  $Poly_3(\mathbb{R})$ . Please do this without a computer<sup>3</sup> and show your steps.<sup>4</sup>

Solution.

**Problem 5** (Axler 6.A.7). Let V be an inner product space. Fix  $u, v \in V$ . Show that |au + bv| = |bu + av| for all  $a, b \in \mathbb{R}$  if and only if |u| = |v|.

Solution.

**Problem 6** (Axler 6.B.10). Suppose V is a real inner product space and  $v_1, \ldots, v_m$  is a linearly independent list of vectors in V. Prove that there are exactly  $2^m$  orthonormal lists  $e_1, \ldots, e_m$  of vectors such that in V such that

$$\operatorname{span}(v_1,\ldots,v_j) = \operatorname{span}(e_1,\ldots,e_j)$$

for each j = 1, ..., m.

Solution.

 $<sup>^2 {\</sup>rm The}$  polynomials you get are called Legendre polynomials.

 $<sup>^{3}\</sup>mathrm{If}$  you like, check your answer with Mathematica.

<sup>&</sup>lt;sup>4</sup>To make this computation easier, it may be helpful to observe that  $\int_{-1}^{1} x^{2k+1} = 0$  for any  $k \ge 0$  because odd polynomials are odd functions.

## 3 For Davis L.

**Problem 7** (Treil 5.3.8). Let V be a real inner product space of dimension n. Let  $E \subset V$  be subspace of dimension r, and let  $P: V \to V$  be the orthogonal projection onto E. Find the eigenvalues and eigenvectors of P, and determine the algebraic and geometric multiplicities of each eigenvalue.

Solution.

**Problem 8** (Axler 6.B.9). What happens when Gram–Schmidt is applied to a list of vectors that is not linearly independent?

Solution.

**Problem 9.** Fix  $A \in M_{n \times m}(F)$ . Give an alternate proof <sup>5</sup> of the rank theorem rank $(A) = \operatorname{rank}(A^t)$  as follows.

- (a) Show that the span of the rows of A is the orthogonal complement to kerA. Deduce that  $m = \dim \operatorname{rank}(A^t) + \dim \ker A$ .
- (b) Use (a) together with the rank-nullity theorem to prove the rank theorem.

Solution.

 $<sup>^5\</sup>mathrm{It}$  would be good to go back and remember how we proved the rank theorem before.

#### 4 For Joey F.

**Problem 10.** If  $A = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$ , then we can define  $\langle \cdot, \cdot \rangle : \mathbb{R}^2 \to \mathbb{R}^2 \to \mathbb{R}$ 

by  $\langle v, w \rangle = v^t A w$ . This will always be symmetric and bilinear, but not always positive definite. Show that it's positive definite if and only if a, d > 0 and det A > 0. Hint: complete the square.

Solution.

**Problem 11** (Axler 6.A.19,21). Let V be a vector space. We say a norm  $|\cdot|: V \to \mathbb{R}$  satisfies the parallelogram law if

$$|x+y|^2 + |x-y|^2 = 2|x|^2 + 2|y|^2$$

for every  $x, y \in V$ . Here you'll prove that if a norm satisfies the parallelogram law, then it comes from an inner product.<sup>6</sup>

(a) Assume V is an inner product space. Show that

$$\langle x, y \rangle = \frac{|x+y|^2 - |x-y|^2}{4}$$

for all  $x, y \in V$ .

(b) Let  $|\cdot|: V \to \mathbb{R}$  be a norm. Show that if  $|\cdot|$  satisfies the parallelogram law, then there exists an inner product  $\langle \cdot, \cdot \rangle$  on V so that  $|x| = \langle x, x \rangle^{1/2}$  for every  $x \in V$ . Hint: first you need to define  $\langle \cdot, \cdot \rangle$ ; then you need to check that  $\langle v, v \rangle = |v|^2$  for every v; and then you need to show that  $\langle \cdot, \cdot \rangle$  is an inner product.

Solution.

**Problem 12** (Axler 6.A.31). Use inner products to prove Apollonius's identity: in a triangle with sides of length a, b, c, let d be the length of the line segment from the midpoint of the side of length c to the opposite vertex. Then  $a^2 + b^2 = \frac{1}{2}c^2 + 2d^2$ .





<sup>&</sup>lt;sup>6</sup>We proved the converse in class, so altogether we see that a norm comes from an inner product if and only if it satisfies the parallelogram law.