Homework 8

Math 25a

Due November 16, 2018

Topics covered (lectures 15-17): eigenvectors, polynomials, satisfied polynomials Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B.4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Beckham

Problem 1 (Axler 5.A.18,20). Find all eigenvalues and eigenvectors of the following linear operators in $L(F^{\infty})$.

(a) $T(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$

(b)
$$S(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots)$$

Solution.

Problem 2 (Axler 5.B.3). Suppose $T \in L(V)$ and $T^2 = I$ and -1 is not an eigenvalue of T. Prove that T = I. Hint: satisfied polynomials.

Solution.

Problem 3 (Axler 5.A.11-12). Let $D : Poly(\mathbb{R}) \to \mathbb{R}$ be the derivative.

- (a) Find all eigenvalues and eigenvectors of D.
- (b) Consider $T : \operatorname{Poly}_4(\mathbb{R}) \to \operatorname{Poly}_4(\mathbb{R})$ defined by $T(p) = x \cdot D(p)$. Find all eigenvalues and eigenvectors of T.

Solution.

2 For Davis

Problem 4 (Treil 4.1.11). Fix $A \in M_n(\mathbb{C})$. Recall that the <u>trace</u> of $A = (a_{ij})$ is

 $\operatorname{tr}(A) = a_{11} + \dots + a_{nn}.$

Show that tr(A) is the sum of the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A as follows.

(a) Compute the coefficient of t^{n-1} in the right side of the equality

 $\det(A - tI) = (\lambda_1 - t) \cdots (\lambda_n - t).$

(b) Show that det(A - tI) can be represented as

$$\det(A - tI) = (a_{11} - t) \cdots (a_{nn} - t) + q(t)$$

where q(t) is a polynomial of degree at most n-2.

- (c) Conclude $tr(A) = \lambda_1 + \cdots + \lambda_n$ by comparing coefficients on t^{n-1} .
- (d) Consider the matrix

$$A = \begin{pmatrix} 51 & -12 & 21\\ 60 & -40 & -28\\ 57 & -68 & 1 \end{pmatrix}$$

Two of the eigenvalues of A are -48 and 24. Without using a computer or writing anything down, find the third eigenvalue.

Solution.

Problem 5 (Axler 5.A.15). Fix $S, T \in L(V)$ and assume S is invertible.

- (a) Prove that T and STS^{-1} have the same eigenvalues.
- (b) How are the eigenvectors of T and the eigenvectors of STS^{-1} related?

Solution.

Problem 6 (Axler 5.A.24). Let $A \in M_n(F)$. Let $T \in L(F^n)$ be the linear operator given by Tx = Ax.

- (a) Suppose the sum of the entries in each row of A equals k. Prove that k is an eigenvalue of T.
- (b) Suppose the sum of the entries in each column of A equals k. Prove that k is an eigenvalue of T.

Solution.

3 For Joey

- **Problem 7** (Treil 4.1.7-9). (a) Show that the characteristic polynomial of a block triangular matrix $\begin{pmatrix} A & * \\ 0 & B \end{pmatrix}$, where A, B are square matrices, is det(A xI) det(B xI). Hint: use a problem from HW7.
 - (b) Let v_1, \ldots, v_n be a basis for V. Assume that v_1, \ldots, v_k are eigenvectors for T with eigenvalue λ , i.e. $Tv_j = \lambda v_j$ for $j = 1, \ldots, k$. Show that in this basis the matrix of T has block triangular form

$$\left(\begin{array}{cc}\lambda I_k & * \\ 0 & B\end{array}\right)$$

where I_k is the $k \times k$ identity matrix and $B \in M_{n-k}(F)$.

(c) Use (a) and (b) to prove that the geometric multiplicity is at most the algebraic multiplicity.

Solution.

Problem 8 (Axler 5.A.26). Suppose that $T \in L(V)$ is such that every nonzero vector in V is an eigenvector of T. Prove that T = cI is a scalar multiple of the identity. Hint: it might help to first prove that if u, v are eigenvectors of T such that u + v is also an eigenvector of T, then u and v have the same eigenvalue.

Solution.

Problem 9 (Axler 5.A.28). Fix finite dimensional V and assume dim $V \ge 3$. Suppose that $T \in L(V)$ and that every 2-dimensional subspace $U \subset V$ is invariant¹ under T. Show that T = cI for some $c \in F$. Hint: start with $v \in V$ and show directly that $Tv = \lambda v$ for some λ .

Solution.

¹A subspace $U \subset V$ is called <u>invariant</u> under T if $T(u) \in U$ for all $u \in U$. For example, if U is 1-dimensional, then this is equivalent to the nonzero vectors in U being eigenvectors. If $U = \operatorname{span}(u, w)$ is 2-dimensional, then U is invariant means that T(u) = au + bw and also T(w) = cu + dw for some $a, b, c, d \in F$.

4 For Laura

Problem 10. Suppose $T \in L(\mathbb{R}^3)$ and $-4, 5, \sqrt{7}$ are eigenvalues of T. Prove that there exists $x \in \mathbb{R}^3$ so that $Tx - 9x = (-4, 5, \sqrt{7})$.

Solution.

Problem 11 (Axler 5.A.23). Suppose V is finite dimensional and $S, T \in L(V)$. Prove that ST and TS have the same eigenvalues. (Hint: You will need to use the assumption that V is finite dimensional!)

Solution.

Problem 12. Recall the Cayley–Hamilton theorem: $A \in M_n(F)$ satisfies its characteristic polynomial $p_A = \det(A - xI)$. Prove this in the case when A is diagonalizable.

Solution.