Homework 8

Math 25a

Due November 16, 2018

Topics covered (lectures 15-17): eigenvectors, polynomials, satisfied polynomials Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B. 4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Beckham

Problem 1 (Axler 5.A.18,20). Find all eigenvalues and eigenvectors of the following linear operators in $L\left(F^{\infty}\right)$.
(a) $T\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)$
(b) $S\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)$

Solution.

Problem 2 (Axler 5.B.3). Suppose $T \in L(V)$ and $T^{2}=I$ and -1 is not an eigenvalue of T. Prove that $T=I$. Hint: satisfied polynomials.

Solution.
Problem 3 (Axler 5.A.11-12). Let $D: \operatorname{Poly}(\mathbb{R}) \rightarrow \mathbb{R}$ be the derivative.
(a) Find all eigenvalues and eigenvectors of D.
(b) Consider $T: \mathrm{Poly}_{4}(\mathbb{R}) \rightarrow \mathrm{Poly}_{4}(\mathbb{R})$ defined by $T(p)=x \cdot D(p)$. Find all eigenvalues and eigenvectors of T.

Solution.

2 For Davis

Problem 4 (Treil 4.1.11). Fix $A \in M_{n}(\mathbb{C})$. Recall that the trace of $A=\left(a_{i j}\right)$ is

$$
\operatorname{tr}(A)=a_{11}+\cdots+a_{n n}
$$

Show that $\operatorname{tr}(A)$ is the sum of the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A as follows.
(a) Compute the coefficient of t^{n-1} in the right side of the equality

$$
\operatorname{det}(A-t I)=\left(\lambda_{1}-t\right) \cdots\left(\lambda_{n}-t\right)
$$

(b) Show that $\operatorname{det}(A-t I)$ can be represented as

$$
\operatorname{det}(A-t I)=\left(a_{11}-t\right) \cdots\left(a_{n n}-t\right)+q(t)
$$

where $q(t)$ is a polynomial of degree at most $n-2$.
(c) Conclude $\operatorname{tr}(A)=\lambda_{1}+\cdots+\lambda_{n}$ by comparing coefficients on t^{n-1}.
(d) Consider the matrix

$$
A=\left(\begin{array}{rrr}
51 & -12 & 21 \\
60 & -40 & -28 \\
57 & -68 & 1
\end{array}\right) .
$$

Two of the eigenvalues of A are -48 and 24. Without using a computer or writing anything down, find the third eigenvalue.

Solution.

Problem 5 (Axler 5.A.15). Fix $S, T \in L(V)$ and assume S is invertible.
(a) Prove that T and $S T S^{-1}$ have the same eigenvalues.
(b) How are the eigenvectors of T and the eigenvectors of $S T S^{-1}$ related?

Solution.

Problem 6 (Axler 5.A.24). Let $A \in M_{n}(F)$. Let $T \in L\left(F^{n}\right)$ be the linear operator given by $T x=A x$.
(a) Suppose the sum of the entries in each row of A equals k. Prove that k is an eigenvalue of T.
(b) Suppose the sum of the entries in each column of A equals k. Prove that k is an eigenvalue of T.

Solution.

3 For Joey

Problem 7 (Treil 4.1.7-9). (a) Show that the characteristic polynomial of a block triangular ma$\operatorname{trix}\left(\begin{array}{cc}A & * \\ 0 & B\end{array}\right)$, where A, B are square matrices, is $\operatorname{det}(A-x I) \operatorname{det}(B-x I)$. Hint: use a problem from HW7.
(b) Let v_{1}, \ldots, v_{n} be a basis for V. Assume that v_{1}, \ldots, v_{k} are eigenvectors for T with eigenvalue λ, i.e. $T v_{j}=\lambda v_{j}$ for $j=1, \ldots, k$. Show that in this basis the matrix of T has block triangular form

$$
\left(\begin{array}{cc}
\lambda I_{k} & * \\
0 & B
\end{array}\right)
$$

where I_{k} is the $k \times k$ identity matrix and $B \in M_{n-k}(F)$.
(c) Use (a) and (b) to prove that the geometric multiplicity is at most the algebraic multiplicity.

Solution.

Problem 8 (Axler 5.A.26). Suppose that $T \in L(V)$ is such that every nonzero vector in V is an eigenvector of T. Prove that $T=c I$ is a scalar multiple of the identity. Hint: it might help to first prove that if u, v are eigenvectors of T such that $u+v$ is also an eigenvector of T, then u and v have the same eigenvalue.

Solution.
Problem 9 (Axler 5.A.28). Fix finite dimensional V and assume $\operatorname{dim} V \geq 3$. Suppose that $T \in$ $L(V)$ and that every 2-dimensional subspace $U \subset V$ is invariant ${ }^{1}$ under T. Show that $T=c I$ for some $c \in F$. Hint: start with $v \in V$ and show directly that $T v=\lambda v$ for some λ.

Solution.

[^0]
4 For Laura

Problem 10. Suppose $T \in L\left(\mathbb{R}^{3}\right)$ and $-4,5, \sqrt{7}$ are eigenvalues of T. Prove that there exists $x \in \mathbb{R}^{3}$ so that $T x-9 x=(-4,5, \sqrt{7})$.

Solution.
Problem 11 (Axler 5.A.23). Suppose V is finite dimensional and $S, T \in L(V)$. Prove that $S T$ and TS have the same eigenvalues. (Hint: You will need to use the assumption that V is finite dimensional!)

Solution.
Problem 12. Recall the Cayley-Hamilton theorem: $A \in M_{n}(F)$ satisfies its characteristic polynomial $p_{A}=\operatorname{det}(A-x I)$. Prove this in the case when A is diagonalizable.

Solution.

[^0]: ${ }^{1} \mathrm{~A}$ subspace $U \subset V$ is called invariant under T if $T(u) \in U$ for all $u \in U$. For example, if U is 1-dimensional, then this is equivalent to the nonzero vectors in U being eigenvectors. If $U=\operatorname{span}(u, w)$ is 2-dimensional, then U is invariant means that $T(u)=a u+b w$ and also $T(w)=c u+d w$ for some $a, b, c, d \in F$.

