Homework 7

Math 25a

Due November 2, 2018

Topics covered (lectures 13-14): determinants, multilinear maps
Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B. 4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Davis

Problem 1 (Treil 3.3.2). How are the determinants of A and B related?

$$
A=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{2}
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{lll}
3 a_{1} & 4 a_{2}+5 a_{1} & 5 a_{3} \\
3 b_{1} & 4 b_{2}+5 b_{1} & 5 b_{3} \\
3 c_{1} & 4 c_{2}+5 c_{1} & 5 c_{2}
\end{array}\right)
$$

Solution.

Problem 2.

(a) Compute the determinant of $A=\left(\begin{array}{rrr}0 & 1 & 2 \\ -1 & 0 & -3 \\ 2 & 3 & 0\end{array}\right)$ using row/column operations.
(b) Compute the determinant of $B=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$ using cofactor expansion.

Solution.

Problem 3 (Treil 3.3.10). Fix $A \in M_{n}(F)$. Show that the block triangular matrix $\left(\begin{array}{cc}A & * \\ 0 & I_{m}\end{array}\right)$ has determinant equal to $\operatorname{det} A$. (Here $I_{m} \in M_{m}(F)$ is the $m \times m$ identity matrix.) Use this to show that if $A \in M_{n}(F)$ and $C \in M_{m}(F)$, then

$$
\operatorname{det}\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right)=\operatorname{det} A \operatorname{det} C .
$$

Solution.

2 For Joey

Problem 4 (Treil 3.3.4). $A \in M_{n}(F)$ is called skew-symmetric if $A^{t}=-A$. Prove that if A is skew-symmetric and n is odd, then $\operatorname{det} A=0$. Is this true for n even?

Solution.

Problem 5 (Treil 3.4.1). Suppose the permutation σ takes $(1,2,3,4,5)$ to (5, 4, 1, 2, 3).
(a) Find the sign of σ.
(b) Describe the permutation $\sigma^{2}=\sigma \circ \sigma$.
(c) Describe the permutation σ^{-1}.
(d) What is the sign of σ^{-1} ?

Solution.
Problem 6 (Treil 3.4.2). Let P be a permutation matrix, i.e. an $n \times n$ matrix consisting of zeros and ones such that there is exactly one 1 in every row and every column. In the 3×3 case there are 6 permutation matrices; two of them are

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

(a) Give a geometric description for the linear map corresponding to P. This will explain the name "permutation matrix".
(b) Show P is invertible and describe P^{-1}.
(c) Show that there is $N>0$ so that $P^{N}=I$. Hint: use the fact that there are only finitely many permutation matrices.

Solution.

3 For Laura

Problem 7 (Treil 3.4.3). Why is the number of permutations of $\{1,2, \ldots, 9\}$ even, and why are exactly half of the permutations odd? ${ }^{1}$ Hint: this is hard to see in terms of permutations, but easier if you use determinants.

Solution.

Problem 8 (Treil 3.4.5 and 3.5.7). This problem is about the algorithmic complexity of computing determinants. Let A be an $n \times n$ matrix.
(a) How many multiplications and additions are required to compute $\operatorname{det} A$ using the formula for the determinant?
(b) How many multiplications are needed to compute $\operatorname{det} A$ using cofactor expansion? Explain your answer.

Solution.

Problem 9 (Axler 10.B.12). Let a, b, c be positive numbers. Find the volume of the ellipsoid

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}<1\right\}
$$

by finding a set $\Omega \subset \mathbb{R}^{3}$ whose volume you know and an operator $T \in L\left(\mathbb{R}^{3}\right)$ such that $T(\Omega)$ is equal to the ellipsoid above. ${ }^{2}$

Solution.

[^0]
4 For Beckham

Problem 10. Compute the determinant of a rotation matrix. Does this match your intuition?
Solution.
Problem 11 (Treil 3.5.6). A Vandermonde matrix is a square matrix of the form

$$
\left(\begin{array}{ccccc}
1 & c_{0} & c_{0}^{2} & \cdots & c_{0}^{n} \\
1 & c_{1} & c_{1}^{2} & \cdots & c_{1}^{n} \\
\vdots & & \vdots & & \vdots \\
1 & c_{n} & c_{n}^{2} & \cdots & c_{n}^{n}
\end{array}\right)
$$

Here you'll prove that such a matrix has determinant $\prod_{0 \leq i<j \leq n}\left(c_{j}-c_{i}\right)$.
(a) Check that the formula holds for $n=1,2$.
(b) Call the variable c_{n} in the last row x, and show that the determinant is a polynomial

$$
P=A_{n} x^{n}+\cdots+A_{1} x+A_{0}
$$

with the coefficients A_{k} depending on c_{0}, \ldots, c_{n-1}. (You should not try to find an explicit expression for A_{k} in terms of $\left.c_{0}, \ldots, c_{n-1}.\right)$
(c) Show that $c_{0}, c_{1}, \ldots, c_{n-1}$ are all roots of P, i.e. $P\left(c_{i}\right)=0$ for $i=0, \ldots, n-1$. Conclude ${ }^{3}$ that $P=A_{n}\left(x-c_{0}\right)\left(x-c_{1}\right) \cdots\left(x-c_{n-1}\right)$.
(d) Assuming the formula for the Vandermonde determinant is ture for $n-1$, compute A_{n} and prove the formula for n.

Solution.
Problem 12. Use a Vandermonde matrix to prove: if $\left(z_{i}, w_{i}\right) \in \mathbb{C}^{2}$ for $i=0, \ldots, n$, and $z_{i} \neq z_{j}$ for $i \neq j$, then there exists a unique polynomial $p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in$ Poly ${ }_{n}(\mathbb{C})$ so that $p\left(z_{i}\right)=w_{i}$. Hint: view the problem in terms of a system of equations!

Solution.

[^1]
[^0]: ${ }^{1}$ N.B. "even" and "odd" have two different sorts of meanings in this sentence!
 ${ }^{2}$ You may use the formula $\operatorname{vol}(T(\Omega))=|\operatorname{det} T| \cdot \operatorname{vol}(\Omega)$ from Axler 10.54. This vibes with our intuition that the determinant measures volume expansion of a linear map. We'll prove this formula eventually.

[^1]: ${ }^{3}$ Use the Root theorem: Fix $p \in \operatorname{Poly}(F)$ with degree $n \geq 1$. If $p(c)=0$, then there exists $q \in \operatorname{Poly}(F)$ with degree $n-1$ so that $p=q \cdot(x-c)$. (We will prove this theorem eventually.)

