Homework 7

Math 25a

Due November 2, 2018

Topics covered (lectures 13-14): determinants, multilinear maps Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B.4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Davis

Problem 1 (Treil 3.3.2). How are the determinants of A and B related?

$$A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_2 \end{pmatrix} \quad and \quad B = \begin{pmatrix} 3a_1 & 4a_2 + 5a_1 & 5a_3 \\ 3b_1 & 4b_2 + 5b_1 & 5b_3 \\ 3c_1 & 4c_2 + 5c_1 & 5c_2 \end{pmatrix}$$

Solution.

Problem 2.

(a) Compute the determinant of
$$A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ 2 & 3 & 0 \end{pmatrix}$$
 using row/column operations
(b) Compute the determinant of $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ using cofactor expansion.

Solution.

Problem 3 (Treil 3.3.10). Fix $A \in M_n(F)$. Show that the block triangular matrix $\begin{pmatrix} A & * \\ 0 & I_m \end{pmatrix}$ has determinant equal to det A. (Here $I_m \in M_m(F)$ is the $m \times m$ identity matrix.) Use this to show that if $A \in M_n(F)$ and $C \in M_m(F)$, then

$$\det \left(\begin{array}{cc} A & B \\ 0 & C \end{array}\right) = \det A \det C.$$

Solution.

2 For Joey

Problem 4 (Treil 3.3.4). $A \in M_n(F)$ is called skew-symmetric if $A^t = -A$. Prove that if A is skew-symmetric and n is odd, then det A = 0. Is this true for n even?

Solution.

Problem 5 (Treil 3.4.1). Suppose the permutation σ takes (1, 2, 3, 4, 5) to (5, 4, 1, 2, 3).

- (a) Find the sign of σ .
- (b) Describe the permutation $\sigma^2 = \sigma \circ \sigma$.
- (c) Describe the permutation σ^{-1} .
- (d) What is the sign of σ^{-1} ?

Solution.

Problem 6 (Treil 3.4.2). Let P be a <u>permutation matrix</u>, i.e. an $n \times n$ matrix consisting of zeros and ones such that there is exactly one 1 in every row and every column. In the 3×3 case there are 6 permutation matrices; two of them are

$$\left(\begin{array}{rrrr} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right) \quad and \quad \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right).$$

- (a) Give a geometric description for the linear map corresponding to P. This will explain the name "permutation matrix".
- (b) Show P is invertible and describe P^{-1} .
- (c) Show that there is N > 0 so that $P^N = I$. Hint: use the fact that there are only finitely many permutation matrices.

Solution.

3 For Laura

Problem 7 (Treil 3.4.3). Why is the number of permutations of $\{1, 2, ..., 9\}$ even, and why are exactly half of the permutations odd?¹ Hint: this is hard to see in terms of permutations, but easier if you use determinants.

Solution.

Problem 8 (Treil 3.4.5 and 3.5.7). This problem is about the algorithmic complexity of computing determinants. Let A be an $n \times n$ matrix.

- (a) How many multiplications and additions are required to compute det A using the formula for the determinant?
- (b) How many multiplications are needed to compute det A using cofactor expansion? Explain your answer.

Solution.

Problem 9 (Axler 10.B.12). Let a, b, c be positive numbers. Find the volume of the ellipsoid

$$\left\{(x,y,z) \in \mathbb{R}^3: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} < 1\right\}$$

by finding a set $\Omega \subset \mathbb{R}^3$ whose volume you know and an operator $T \in L(\mathbb{R}^3)$ such that $T(\Omega)$ is equal to the ellipsoid above.²

Solution.

¹N.B. "even" and "odd" have two different sorts of meanings in this sentence!

²You may use the formula $\operatorname{vol}(T(\Omega)) = |\det T| \cdot \operatorname{vol}(\Omega)$ from Axler 10.54. This vibes with our intuition that the determinant measures volume expansion of a linear map. We'll prove this formula eventually.

4 For Beckham

Problem 10. Compute the determinant of a rotation matrix. Does this match your intuition?

Solution.

Problem 11 (Treil 3.5.6). A Vandermonde matrix is a square matrix of the form

(1	c_0	c_0^2	•••	c_0^n
	1	c_1	c_{1}^{2}	• • •	c_1^n
	:		÷		:
	1	c_n	c_n^2	•••	c_n^n

Here you'll prove that such a matrix has determinant $\prod_{0 \le i \le j \le n} (c_j - c_i)$.

- (a) Check that the formula holds for n = 1, 2.
- (b) Call the variable c_n in the last row x, and show that the determinant is a polynomial

$$P = A_n x^n + \dots + A_1 x + A_0$$

with the coefficients A_k depending on c_0, \ldots, c_{n-1} . (You should not try to find an explicit expression for A_k in terms of c_0, \ldots, c_{n-1} .)

- (c) Show that $c_0, c_1, \ldots, c_{n-1}$ are all roots of P, i.e. $P(c_i) = 0$ for $i = 0, \ldots, n-1$. Conclude³ that $P = A_n(x c_0)(x c_1) \cdots (x c_{n-1})$.
- (d) Assuming the formula for the Vandermonde determinant is ture for n-1, compute A_n and prove the formula for n.

Solution.

Problem 12. Use a Vandermonde matrix to prove: if $(z_i, w_i) \in \mathbb{C}^2$ for i = 0, ..., n, and $z_i \neq z_j$ for $i \neq j$, then there exists a unique polynomial $p(x) = a_n x^n + \cdots + a_1 x + a_0 \in Poly_n(\mathbb{C})$ so that $p(z_i) = w_i$. Hint: view the problem in terms of a system of equations!

Solution.

³Use the *Root theorem:* Fix $p \in Poly(F)$ with degree $n \ge 1$. If p(c) = 0, then there exists $q \in Poly(F)$ with degree n-1 so that $p = q \cdot (x-c)$. (We will prove this theorem eventually.)