Homework 6

Math 25a

Due October 26, 2018

Topics covered (lectures 11-12): linear systems, row operations, elementary matrices, invertibility/inverses

Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B.4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

For Joey 1

Problem 1. A matrix $A \in M_n(F)$ is invertible if there exists a matrix B so that AB = BA = I. Prove that if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(F)$ and $ad - bc \neq 0$, then A is invertible. Find the inverse of A. (Option 1: apply row reduction to $\begin{pmatrix} a & b & | & 1 & 0 \\ c & d & | & 0 & 1 \end{pmatrix}$. Option 2: write $B = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$ and set up a system of equations to solve for the coefficients of B.) Hint: it may help to consider the cases $a \neq 0$ and a = 0 separately.

Solution.

Problem 2. Let $F = \mathbb{Z}/2\mathbb{Z}$.

- (a) Write down all the invertible matrices in $M_2(F)$.
- (b) Find an invertible matrix $A \in M_2(F)$ so that $A^2 \neq I$, but $A^3 = I$.

Solution.

Problem 3 (Axler 3.D.9). Assume V is finite dimensional and let $S, T \in L(V)$. Prove that ST is invertible if and only if S and T are invertible.

Solution.

2 For Laura

Problem 4 (Treil 2.3.1). For what value of b does the system

$$\left(\begin{array}{rrrr}1&2&2\\2&4&6\\1&2&3\end{array}\right)x=\left(\begin{array}{rrrr}1\\4\\b\end{array}\right)$$

have a solution. Find the general solution of the system for this value of b.

Solution.

Problem 5. Which of the following are bases for \mathbb{R}^3 ?

- (a) (1, 2, -1), (1, 0, 2), (2, 1, 1)
- (b) (-1,3,2), (-3,1,3), (2,10,2)

Solution.

Problem 6. Consider the following vectors in \mathbb{R}^5 .

$$v_1 = (2, -1, 1, 5, -3), v_2 = (3, -2, 0, 0, 0), v_3 = (1, 1, 50, -921, 0)$$

- (a) Show that these vectors are linearly independent.
- (b) Complete v_1, v_2, v_3 to a basis.

Hint: if you do part (b) first, you can do everything without any computation. Hint to the hint: upper triangular matrices.

Solution.

3 For Beckham

Problem 7. Determine the dimension of the kernel and the image for the linear maps defined by the following matrices.

$$\left(\begin{array}{rrrrr}1&1&0\\0&1&1\\1&1&0\end{array}\right), \quad \left(\begin{array}{rrrrr}1&2&3&1&1\\1&4&0&1&2\\0&2&-3&0&1\\1&0&0&0&0\end{array}\right)$$

Solution.

Problem 8. A is a 54 × 37 matrix with rank 31. What are the dimensions of ker A, ker A^t , Im A, and Im A^t ?

Solution.

Problem 9 (Axler 3.D.3). Suppose V is finite dimensional, $U \subset V$ is a subspace, and $S \in L(U, V)$ (i.e. $S : U \to V$ is a linear map). Prove there exists an invertible $T \in L(V)$ so that Tu = Su for every $u \in U$ if and only if S is injective.

Solution.

4 For Davis

Problem 10 (c.f. Axler 2.A.1). Let v_1, \ldots, v_n be vectors in V. Prove that if (v_1, \ldots, v_n) spans V, then so does $(v_1 - v_2, v_2 - v_3, \ldots, v_{n-1} - v_n, v_n)$. You could do this directly, but I want you to prove this using linear maps. Specifically, consider the linear maps $T : \mathbb{R}^n \to V$ and $T' : \mathbb{R}^n \to V$ defined by $T(e_i) = v_i$ and $T'(e_i) = \begin{cases} v_i - v_{i+1} & i \leq n-1 \\ v_n & i = n \end{cases}$. What does the hypothesis tell you about T? Find an invertible linear map $S : \mathbb{R}^n \to \mathbb{R}^n$ such that T' = TS.

Solution.

Problem 11 (Axler 3.D.4). Suppose W is finite dimensional and $T, T' \in L(V, W)$. Prove that $\ker T = \ker T'$ if and only if there exists an invertible operator $S \in L(V)$ so that T' = ST. Hint: you may not assume V is finite dimensional.

Solution.

Problem 12. Let $T, T' \in L(V, W)$ with W finite-dimensional. Assume that ker $T = \ker T'$. Show that it's possible to choose bases on V and W in different ways so that the matrix of T with respect to one choice of bases is the matrix of T' with respect to the other choice of bases.¹

Solution.

¹This might be confusing – please ask for clarification if you need it.