Homework 6

Math 25a

Due October 26, 2018

Topics covered (lectures 11-12): linear systems, row operations, elementary matrices, invertibility/inverses

Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B. 4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Joey

Problem 1. A matrix $A \in M_{n}(F)$ is invertible if there exists a matrix B so that $A B=B A=I$.
Prove that if $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(F)$ and $a d-b c \neq 0$, then A is invertible. Find the inverse of A. (Option 1: apply row reduction to $\left(\begin{array}{ll|ll}a & b & 1 & 0 \\ c & d & 0 & 1\end{array}\right)$. Option 2: write $B=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$ and set up a system of equations to solve for the coefficients of B.) Hint: it may help to consider the cases $a \neq 0$ and $a=0$ separately.

Solution.
Problem 2. Let $F=\mathbb{Z} / 2 \mathbb{Z}$.
(a) Write down all the invertible matrices in $M_{2}(F)$.
(b) Find an invertible matrix $A \in M_{2}(F)$ so that $A^{2} \neq I$, but $A^{3}=I$.

Solution.

Problem 3 (Axler 3.D.9). Assume V is finite dimensional and let $S, T \in L(V)$. Prove that $S T$ is invertible if and only if S and T are invertible.

Solution.

2 For Laura

Problem 4 (Treil 2.3.1). For what value of b does the system

$$
\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 4 & 6 \\
1 & 2 & 3
\end{array}\right) x=\left(\begin{array}{l}
1 \\
4 \\
b
\end{array}\right)
$$

have a solution. Find the general solution of the system for this value of b.
Solution.
Problem 5. Which of the following are bases for \mathbb{R}^{3} ?
(a) $(1,2,-1),(1,0,2),(2,1,1)$
(b) $(-1,3,2),(-3,1,3),(2,10,2)$

Solution.

Problem 6. Consider the following vectors in \mathbb{R}^{5}.

$$
v_{1}=(2,-1,1,5,-3), \quad v_{2}=(3,-2,0,0,0), \quad v_{3}=(1,1,50,-921,0)
$$

(a) Show that these vectors are linearly independent.
(b) Complete v_{1}, v_{2}, v_{3} to a basis.

Hint: if you do part (b) first, you can do everything without any computation. Hint to the hint: upper triangular matrices.

Solution.

3 For Beckham

Problem 7. Determine the dimension of the kernel and the image for the linear maps defined by the following matrices.

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right),\left(\begin{array}{ccccc}
1 & 2 & 3 & 1 & 1 \\
1 & 4 & 0 & 1 & 2 \\
0 & 2 & -3 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Solution.
Problem 8. A is a 54×37 matrix with rank 31 . What are the dimensions of $\operatorname{ker} A$, $\operatorname{ker} A^{t}, \operatorname{Im} A$, and $\operatorname{Im} A^{t}$?

Solution.

Problem 9 (Axler 3.D.3). Suppose V is finite dimensional, $U \subset V$ is a subspace, and $S \in L(U, V)$ (i.e. $S: U \rightarrow V$ is a linear map). Prove there exists an invertible $T \in L(V)$ so that $T u=S u$ for every $u \in U$ if and only if S is injective.

Solution.

4 For Davis

Problem 10 (c.f. Axler 2.A.1). Let v_{1}, \ldots, v_{n} be vectors in V. Prove that if $\left(v_{1}, \ldots, v_{n}\right)$ spans V, then so does $\left(v_{1}-v_{2}, v_{2}-v_{3}, \ldots, v_{n-1}-v_{n}, v_{n}\right)$. You could do this directly, but I want you to prove this using linear maps. Specifically, consider the linear maps $T: \mathbb{R}^{n} \rightarrow V$ and $T^{\prime}: \mathbb{R}^{n} \rightarrow V$ defined by $T\left(e_{i}\right)=v_{i}$ and $T^{\prime}\left(e_{i}\right)=\left\{\begin{array}{ll}v_{i}-v_{i+1} & i \leq n-1 \\ v_{n} & i=n\end{array}\right.$. What does the hypothesis tell you about T ? Find an invertible linear map $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T^{\prime}=T S$.

Solution.

Problem 11 (Axler 3.D.4). Suppose W is finite dimensional and $T, T^{\prime} \in L(V, W)$. Prove that $\operatorname{ker} T=\operatorname{ker} T^{\prime}$ if and only if there exists an invertible operator $S \in L(V)$ so that $T^{\prime}=S T$. Hint: you may not assume V is finite dimensional.

Solution.
Problem 12. Let $T, T^{\prime} \in L(V, W)$ with W finite-dimensional. Assume that $\operatorname{ker} T=\operatorname{ker} T^{\prime}$. Show that it's possible to choose bases on V and W in different ways so that the matrix of T with respect to one choice of bases is the matrix of T^{\prime} with respect to the other choice of bases. ${ }^{1}$

Solution.

[^0]
[^0]: ${ }^{1}$ This might be confusing - please ask for clarification if you need it.

