Homework 5

Math 25a

Due October 19, 2018

Topics covered (lectures 9-10): matrices, rank-nullity, matrix multiplication, invertibility Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B.4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

For Laura 1

Problem 1. For each linear transformation, find its matrix with respect to the standard bases.

(a) $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x + 2y, 2x - 5y, 7y).

(b) $T: \mathbb{R}^4 \to \mathbb{R}^3$ defined by

$$T(x, y, z, w) = (x + y + z + w, y - w, x + 3y + 6w)$$

Solution.

Problem 2. This problem is about rotation matrices and trig identities.

- (a) Let $A_{\theta} \in M_2(\mathbb{R})$ be the matrix of rotation of \mathbb{R}^2 by $\theta \in [0, 2\pi)$. Show by matrix multiplication that $A_{\theta}A_{-\theta} = I$.
- (b) Observe geometrically that $A_{\theta}A_{\eta} = A_{\theta+\eta}$. Then use matrix multiplication to deduce the "angle-sum" formulas for $\sin(\theta + \eta)$ and $\cos(\theta + \eta)$.

Solution.

Problem 3. Give examples:

- (a) $A, B \in M_2(F)$ so that A + B is not invertible, although A and B are invertible.
- (b) $A, B \in M_2(F)$ so that A, B, and A + B are all invertible.

Solution.

For Beckham $\mathbf{2}$

Problem 4. Multiplication of a matrix $A \in M_2(\mathbb{R})$ and a vector $v \in \mathbb{R}^2$ requires 4 multiplications. Let D be a matrix in $M_{2\times 1000}(\mathbb{R})$, so the columns of D give 1000 vectors in \mathbb{R}^2 . Let $A, B \in M_2(\mathbb{R})$. How many multiplications are required to compute ABD? Consider two possibilities: A(BD) and (AB)D.

Solution.

Problem 5 (Axler 3.B.6). Prove that there is no linear map $T : \mathbb{R}^5 \to \mathbb{R}^5$ such that $\operatorname{Im} T = \ker T$. (Compare with a similar problem on HW4.)

Solution.

Problem 6 (Axler 3.B.16). Suppose there exists a linear map on V whose kernel and image are both finite dimensional. Show that V is finite dimensional. (Hint: You may not use the rank-nullity theorem.)

Solution.

3 For Davis

Problem 7 (Axler 3.B.22). Assume U and V are finite dimensional and $U \xrightarrow{S} V \xrightarrow{T} W$ are linear maps. Show that dim ker $TS \leq \dim \ker S + \dim \ker T$.

Solution.

Problem 8 (Axler 3.D.19). Let $V = Poly(\mathbb{R})$. Suppose that $T: V \to V$ is injective and deg $Tp \leq deg p$ for every nonzero polynomial $p \in V$.

- (a) Prove that T is surjective.
- (b) Prove that $\deg Tp = \deg p$ for every nonzero $p \in V$.

Solution.

Problem 9. The <u>trace</u> of a matrix $A \in M_n(F)$ is the sum of the diagonal entries $tr(A) = \sum_{i=1}^n a_{ii}$.

- (a) Show that tr(AB) = tr(BA).
- (b) Two matrices $A, B \in M_n(F)$ are called <u>similar</u> if $A = CBC^{-1}$ for some invertible $C \in M_n(F)$. Show that similar matrices have the same trace.
- (c) Are the matrices $\begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix}$ and $\begin{pmatrix} 0 & 2 \\ 4 & 2 \end{pmatrix}$ similar?

Solution.

4 For Joey

Problem 10 (Axler 3.B.12). Let V be finite dimensional and let $T : V \to W$ be a linear map. Show there exists a subspace $U \subset V$ so that $U \cap \ker T = \{0\}$ and $\operatorname{Im} T = \{Tu : u \in U\}$.

Solution.

Problem 11 (Axler 3.B.30). Suppose that $S, T : V \to F$ are linear maps so that ker S = ker T. Prove that there exists a constant $c \in F$ so that T = cS.

Solution.

Problem 12 (Axler 3.D.7). Suppose V and W are finite dimensional. Fix $v \in V$ and let

$$E = \{T \in L(V, W) : Tv = 0\}$$

- (a) Show that E is a subspace of L(V, W).
- (b) What is E in the case v = 0? Assuming $v \neq 0$, use the rank-nullity theorem to compute the dimension of E.

Solution.