Homework 5

Math 25a

Due October 19, 2018

Topics covered (lectures 9-10): matrices, rank-nullity, matrix multiplication, invertibility Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B. 4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Laura

Problem 1. For each linear transformation, find its matrix with respect to the standard bases.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y)=(x+2 y, 2 x-5 y, 7 y)$.
(b) $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(x, y, z, w)=(x+y+z+w, y-w, x+3 y+6 w)
$$

Solution.

Problem 2. This problem is about rotation matrices and trig identities.
(a) Let $A_{\theta} \in M_{2}(\mathbb{R})$ be the matrix of rotation of \mathbb{R}^{2} by $\theta \in[0,2 \pi)$. Show by matrix multiplication that $A_{\theta} A_{-\theta}=I$.
(b) Observe geometrically that $A_{\theta} A_{\eta}=A_{\theta+\eta}$. Then use matrix multiplication to deduce the "angle-sum" formulas for $\sin (\theta+\eta)$ and $\cos (\theta+\eta)$.

Solution.

Problem 3. Give examples:
(a) $A, B \in M_{2}(F)$ so that $A+B$ is not invertible, although A and B are invertible.
(b) $A, B \in M_{2}(F)$ so that A, B, and $A+B$ are all invertible.

Solution.

2 For Beckham

Problem 4. Multiplication of a matrix $A \in M_{2}(\mathbb{R})$ and a vector $v \in \mathbb{R}^{2}$ requires 4 multiplications. Let D be a matrix in $M_{2 \times 1000}(\mathbb{R})$, so the columns of D give 1000 vectors in \mathbb{R}^{2}. Let $A, B \in M_{2}(\mathbb{R})$. How many multiplications are required to compute $A B D$? Consider two possibilities: $A(B D)$ and $(A B) D$.

Solution.

Problem 5 (Axler 3.B.6). Prove that there is no linear map $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ such that $\operatorname{Im} T=\operatorname{ker} T$. (Compare with a similar problem on HW4.)

Solution.
Problem 6 (Axler 3.B.16). Suppose there exists a linear map on V whose kernel and image are both finite dimensional. Show that V is finite dimensional. (Hint: You may not use the rank-nullity theorem.)

Solution.

3 For Davis

Problem 7 (Axler 3.B.22). Assume U and V are finite dimensional and $U \xrightarrow{S} V \xrightarrow{T} W$ are linear maps. Show that $\operatorname{dim} \operatorname{ker} T S \leq \operatorname{dim} \operatorname{ker} S+\operatorname{dim} \operatorname{ker} T$.

Solution.
Problem 8 (Axler 3.D.19). Let $V=\operatorname{Poly}(\mathbb{R})$. Suppose that $T: V \rightarrow V$ is injective and $\operatorname{deg} T p \leq$ $\operatorname{deg} p$ for every nonzero polynomial $p \in V$.
(a) Prove that T is surjective.
(b) Prove that $\operatorname{deg} T p=\operatorname{deg} p$ for every nonzero $p \in V$.

Solution.
Problem 9. The trace of a matrix $A \in M_{n}(F)$ is the sum of the diagonal entries $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$.
(a) Show that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(b) Two matrices $A, B \in M_{n}(F)$ are called similar if $A=C B C^{-1}$ for some invertible $C \in M_{n}(F)$. Show that similar matrices have the same trace.
(c) Are the matrices $\left(\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right)$ and $\left(\begin{array}{ll}0 & 2 \\ 4 & 2\end{array}\right)$ similar?

Solution.

4 For Joey

Problem 10 (Axler 3.B.12). Let V be finite dimensional and let $T: V \rightarrow W$ be a linear map. Show there exists a subspace $U \subset V$ so that $U \cap \operatorname{ker} T=\{0\}$ and $\operatorname{Im} T=\{T u: u \in U\}$.

Solution.
Problem 11 (Axler 3.B.30). Suppose that $S, T: V \rightarrow F$ are linear maps so that $\operatorname{ker} S=\operatorname{ker} T$. Prove that there exists a constant $c \in F$ so that $T=c S$.

Solution.
Problem 12 (Axler 3.D.7). Suppose V and W are finite dimensional. Fix $v \in V$ and let

$$
E=\{T \in L(V, W): T v=0\}
$$

(a) Show that E is a subspace of $L(V, W)$.
(b) What is E in the case $v=0$? Assuming $v \neq 0$, use the rank-nullity theorem to compute the dimension of E.

Solution.

