Homework 4

Math 25a

Due October 12, 2018

Topics covered (lecture 8): linear maps, kernel/image
Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B. 4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Beckham

Problem 1 (Axler 3.A.7). Suppose that V is 1-dimensional. Show that for every linear map $T: V \rightarrow V$ there exists $a \in F$ so that $T v=a v$ for all $v \in V$.

Solution.

Problem 2. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. Show that if z is the midpoint of the line segment $[x, y]$ between $x, y \in \mathbb{R}^{n}$, then $T(z)$ is the midpoint of $[T(x), T(y)]$. Hint: give a formula for the midpoint of a line segment in terms of the endpoints.

Problem 3. Consider the bijection $\mathbb{C} \rightarrow \mathbb{R}^{2}$ defined by $x+i y \mapsto(x, y)$. Under this bijection, we can treat \mathbb{C} either as a 1-dimensional complex vector space or as a 2 -dimensional real vector space.
(a) Treating \mathbb{C} as a complex vector space, show that the multiplication by $\alpha=a+i b \in \mathbb{C}$ is a linear transformation of \mathbb{C}. What is its matrix? ${ }^{1}$
(b) Treating \mathbb{C} as the real vector space \mathbb{R}^{2}, show that the multiplication by $\alpha=a+i b$ is a linear map. What is its matrix?
(c) Define $T(x+i y)=2 x-y+i(x-3 y)$. Show that T does not define a linear map $\mathbb{C} \rightarrow \mathbb{C}$ (viewed as a complex vector space), but it does define a linear map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

Solution.

[^0]
2 For Davis

Problem 4 (Axler 3.A.8). Give an example of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(a v)=a f(v)$ for all $a \in \mathbb{R}$ and all $v \in \mathbb{R}^{2}$ but f is not linear.

Solution.
Problem 5 (Axler 3.B.9-10). Let $T: V \rightarrow W$ be a linear map.
(a) Show that if T is injective and v_{1}, \ldots, v_{n} are linearly independent in V, then $T v_{1}, \ldots, T v_{n}$ are linearly independent in W.
(b) Show that if T is surjective and v_{1}, \ldots, v_{n} span V, then $T v_{1}, \ldots, T v_{n}$ span W.

Solution.
Problem 6. Consider $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $T(x, y)=x+y$. Find all the linear maps $S: \mathbb{R} \rightarrow \mathbb{R}^{2}$ so that $T S=I$ (here I refers to the identity map $\mathbb{R} \rightarrow \mathbb{R}$).

Solution.

3 For Joey

Problem 7 (Axler 3.B.20-21). Assume W is finite dimensional and $T: V \rightarrow W$ is linear. ${ }^{2}$
(a) Show that if T is injective, then there exists a linear map $S: W \rightarrow V$ so that $S T=I_{V}$.
(b) Show that if T is surjective, then there exists a linear map $S: W \rightarrow V$ so that $T S=I_{V}$.

Solution.

Problem 8. Write a formula for each of the maps $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, and verify that they are linear.
(a) Project every vector onto the xy-plane.
(b) Reflect every vector through the $x y$-plane.
(c) Rotate the $x y$-plane by $\pi / 6$, leaving the z-axis fixed.

Problem 9. Work out the kernel of the derivative map $D: \operatorname{Poly}(F) \rightarrow \operatorname{Poly}(F)$ when $F=\mathbb{Z} / 2 \mathbb{Z}$. What happens for $F=\mathbb{Z} / p \mathbb{Z}$? ${ }^{3}$

Solution.

[^1]
4 For Laura

Problem 10 (Axler 3.B.5). Give an example of a linear map $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ such that $\operatorname{Im} T=\operatorname{ker} T$.

Solution.

Problem 11. Let Poly (F) be the vector space of all polynomials with coefficients in F, and let $V=$ Fun (F, F) be the vector space of all functions $f: F \rightarrow F$. Define a map of sets $T: \operatorname{Poly}(F) \rightarrow V$ by $T(p)(a)=p(a)$ the function mapping $a \in F$ to $p(a) \in F$.
(a) Show that T is a linear map.
(b) For $F=\mathbb{R}$ show that T is injective but not surjective.
(c) Give an example of a field F where T is surjective but not injective, and prove your claim.

Solution.
Problem 12. Let $F=\mathbb{Z} / p \mathbb{Z}$ for a prime number p. What is the probability that a linear map $T: F^{2} \rightarrow F^{2}$ is a linear isomorphism when randomly choosing out of all such maps? (Note that a linear isomorphism sends a basis of F^{2} to another basis of F^{2} by another problem on this assignment.) As p increases is one more or less likely to choose a linear isomorphism at random?

Solution.

[^0]: ${ }^{1}$ We'll discuss matrices in the next lecture, but I think you can figure this out before then.

[^1]: ${ }^{2}$ Compare this with a similar problem from HW1. The key is to define S so that it is linear. Not every S works!
 ${ }^{3}$ The derivative is the linear map defined on the standard basis by $D\left(x^{i}\right)=i \cdot x^{i-1}$.

