Homework 4

Math 25a

Due October 12, 2018

Topics covered (lecture 8): linear maps, kernel/image

Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B.4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Beckham

Problem 1 (Axler 3.A.7). Suppose that V is 1-dimensional. Show that for every linear map $T: V \to V$ there exists $a \in F$ so that Tv = av for all $v \in V$.

Solution.

Problem 2. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Show that if z is the midpoint of the line segment [x, y] between $x, y \in \mathbb{R}^n$, then T(z) is the midpoint of [T(x), T(y)]. Hint: give a formula for the midpoint of a line segment in terms of the endpoints.

Problem 3. Consider the bijection $\mathbb{C} \to \mathbb{R}^2$ defined by $x + iy \mapsto (x, y)$. Under this bijection, we can treat \mathbb{C} either as a 1-dimensional complex vector space or as a 2-dimensional real vector space.

- (a) Treating \mathbb{C} as a complex vector space, show that the multiplication by $\alpha = a + ib \in \mathbb{C}$ is a linear transformation of \mathbb{C} . What is its matrix?¹
- (b) Treating \mathbb{C} as the real vector space \mathbb{R}^2 , show that the multiplication by $\alpha = a + ib$ is a linear map. What is its matrix?
- (c) Define T(x + iy) = 2x y + i(x 3y). Show that T does not define a linear map $\mathbb{C} \to \mathbb{C}$ (viewed as a complex vector space), but it does define a linear map $\mathbb{R}^2 \to \mathbb{R}^2$

Solution.

 $^{^1\}mathrm{We'll}$ discuss matrices in the next lecture, but I think you can figure this out before then.

2 For Davis

Problem 4 (Axler 3.A.8). *Give an example of a function* $f : \mathbb{R}^2 \to \mathbb{R}$ *such that* f(av) = af(v) *for all* $a \in \mathbb{R}$ *and all* $v \in \mathbb{R}^2$ *but* f *is not linear.*

Solution.

Problem 5 (Axler 3.B.9-10). Let $T: V \to W$ be a linear map.

- (a) Show that if T is injective and v_1, \ldots, v_n are linearly independent in V, then Tv_1, \ldots, Tv_n are linearly independent in W.
- (b) Show that if T is surjective and v_1, \ldots, v_n span V, then Tv_1, \ldots, Tv_n span W.

Solution.

Problem 6. Consider $T : \mathbb{R}^2 \to \mathbb{R}$ defined by T(x, y) = x + y. Find all the linear maps $S : \mathbb{R} \to \mathbb{R}^2$ so that TS = I (here I refers to the identity map $\mathbb{R} \to \mathbb{R}$).

Solution.

3 For Joey

Problem 7 (Axler 3.B.20-21). Assume W is finite dimensional and $T: V \to W$ is linear.²

- (a) Show that if T is injective, then there exists a linear map $S: W \to V$ so that $ST = I_V$.
- (b) Show that if T is surjective, then there exists a linear map $S: W \to V$ so that $TS = I_V$.

Solution.

Problem 8. Write a formula for each of the maps $\mathbb{R}^3 \to \mathbb{R}^3$, and verify that they are linear.

- (a) Project every vector onto the xy-plane.
- (b) Reflect every vector through the xy-plane.
- (c) Rotate the xy-plane by $\pi/6$, leaving the z-axis fixed.

Problem 9. Work out the kernel of the derivative map $D : \operatorname{Poly}(F) \to \operatorname{Poly}(F)$ when $F = \mathbb{Z}/2\mathbb{Z}$. What happens for $F = \mathbb{Z}/p\mathbb{Z}$?³

Solution.

²Compare this with a similar problem from HW1. The key is to define S so that it is linear. Not every S works! ³The derivative is the linear map defined on the standard basis by $D(x^i) = i \cdot x^{i-1}$.

4 For Laura

Problem 10 (Axler 3.B.5). *Give an example of a linear map* $T : \mathbb{R}^4 \to \mathbb{R}^4$ *such that* Im $T = \ker T$.

Solution.

Problem 11. Let Poly(F) be the vector space of all polynomials with coefficients in F, and let V = Fun(F, F) be the vector space of all functions $f : F \to F$. Define a map of sets $T : Poly(F) \to V$ by T(p)(a) = p(a) the function mapping $a \in F$ to $p(a) \in F$.

- (a) Show that T is a linear map.
- (b) For $F = \mathbb{R}$ show that T is injective but not surjective.
- (c) Give an example of a field F where T is surjective but not injective, and prove your claim.

Solution.

Problem 12. Let $F = \mathbb{Z}/p\mathbb{Z}$ for a prime number p. What is the probability that a linear map $T : F^2 \to F^2$ is a linear isomorphism when randomly choosing out of all such maps? (Note that a linear isomorphism sends a basis of F^2 to another basis of F^2 by another problem on this assignment.) As p increases is one more or less likely to choose a linear isomorphism at random?

Solution.