Homework 8

Math 25a

Due November 8, 2017

Topics covered: Linear maps, eigenvectors, eigenvalues, polynomials of linear operators, page-rank algorithm

Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B.4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Ellen

Problem 1 (Axler 6.A.1). Show that $\langle (x_1, x_2), (y_1, y_2) \rangle = |x_1y_1| + |x_2y_2|$ is not an inner product on \mathbb{R}^2 .

Solution.

Problem 2 (Axler 6.A.4). Let V be a real inner product space.

- (a) Show that $\langle u + v, u v \rangle = ||u||^2 ||v||^2$ for every $u, v \in V$.
- (b) Use this to argue that the diagonals of a rhombus are perpendicular to each other.

Solution.

Problem 3 (Axler 6.A). Suppose $T \in L(V)$ is such that $||Tv|| \leq ||v||$ for every $v \in V$. Prove that $T - \sqrt{2}I$ is invertible.

Solution.

2 For Michele

Problem 4. Use Cauchy–Schwarz to prove that $(ac+bd)^2 \leq (a^2+b^2)(c^2+d^2)$ for any real numbers a, b, c, d. (You could also solve this by expanding both sides, but use Cauchy–Schwarz to get familiar with how it works.)

Solution.

Problem 5. Fix $n \ge 1$. Prove that $(x_1 + \dots + x_n)^2 \le n(x_1^2 + \dots + x_n^2)$ for all $x_1, \dots, x_n \in \mathbb{R}$. Hint: whatever you do, for the love of algebra, <u>do not</u> expand both sides. Instead use Cauchy–Schwarz.

Solution.

Problem 6 (Axler 6.B.1). Fix $t \in \mathbb{R}$. Let $u_t = (\cos t, \sin t)$ and $v_t = (-\sin t, \cos t)$ and $w_t = (\sin t, -\cos t)$. Show that (u, v) and (u, w) are each orthonormal bases of \mathbb{R}^2 . Show that every orthonormal basis of \mathbb{R}^2 has this form (i.e. for any orthonormal basis (e_1, e_2) , there is $t \in \mathbb{R}$ so that (e_1, e_2) is either equal to (u_t, v_t) or (u_t, w_t)).

Solution.

3 For Charlie

Problem 7. On $Poly_2(\mathbb{R})$, consider the inner product $\langle p, q \rangle = \int_0^1 p(x)q(x)dx$. Apply Gram-Schmidt to the basis $1, x, x^2$ to produce an orthonormal basis for $Poly_2(\mathbb{R})$. (Please do this without a computer and show your steps. If you like, check that you get the same answer as Mathematica.)

Solution.

Problem 8 (Axler 6.B.10). Suppose V is a real inner product space and v_1, \ldots, v_m is a linearly independent list of vectors in V. Prove that there are exactly 2^m orthogonal lists e_1, \ldots, e_m of vectors such that in V such that

$$\operatorname{span}(v_1,\ldots,v_j) = \operatorname{span}(e_1,\ldots,e_j)$$

for each j = 1, ..., m.

Solution.

Problem 9 (Axler 6.B.9). What happens when Gram–Schmidt is applied to a list of vectors that's not linearly independent?

Solution.

4 For Natalia

Problem 10 (Axler 6.B.13). Let v_1, \ldots, v_k be linearly independent vectors in V. Show that there is a vector $w \in V$ so that $\langle v_i, w \rangle > 0$ for each $i = 1, \ldots, k$.

Solution.

Problem 11 (Axler 6.C.11). In \mathbb{R}^4 , let U be the subspace spanned by (1,1,0,0) and (1,1,1,2). Find the point on U that is closest to (1,2,3,4) (i.e. find $u \in U$ such that ||u - (1,2,3,4)|| is as small as possible).

Solution.

Problem 12 (Axler 6.C.7). Suppose V is finite dimensional and $P \in L(V)$ is such that $P^2 = P$ and every vector of ker P is orthogonal to every vector of Im P. Prove that there exists a subspace $U \subset V$ such that $P = P_U$, where P_U is the orthogonal projection with respect to U (we called it $\pi: V \to U$ in class).

Solution.