Homework 5

Math 25a

Due October 11, 2017

Topics covered: matrices, vector space of linear maps, isomorphisms, quotient spaces Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B.4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Natalia

Problem 1 (Axler 3.C.2). Let $D : \operatorname{Poly}_3(\mathbb{R}) \to \operatorname{Poly}_2(\mathbb{R})$ be the differentiation map. Find a basis of $\operatorname{Poly}_3(\mathbb{R})$ and a basis of $\operatorname{Poly}_3(\mathbb{R})$ such that the matrix of D with respect to these bases is

$$\left(\begin{array}{rrrr}1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\end{array}\right)$$

Solution.

Problem 2 (Axler 3.B.5-6). (a) Give an example of a linear map $T : \mathbb{R}^4 \to \mathbb{R}^4$ such that $\operatorname{Im} T = \ker T$.

(b) Prove that there is no linear map $T : \mathbb{R}^5 \to \mathbb{R}^5$ such that $\operatorname{Im} T = \ker T$.

Solution.

Problem 3. Let V and W be finite dimensional vector spaces over F with bases (v_1, \ldots, v_n) and (w_1, \ldots, w_m) respectively.

- (a) Define a map $T_{ij}: V \to W$ that sends the v_j to w_i and maps all the other basis vectors v_k to $0 \in W$. Why is T_{ij} is linear? Describe the matrix for T_{ij} .
- (b) Show that the maps $\{T_{ij} : 1 \leq j \leq n, 1 \leq i \leq m\}$ is a basis for L(V, W) and give a formula for the dimension of L(V, W) in terms of dim V and dim W.
- (c) If W = F, take $w_1 = 1$, and show that the map taking v_j to T_{1j} defines a linear isomorphism $\phi: V \to L(V, F)$.

Solution.

For Michele 2

Problem 4 (Axler 3.D.7). Suppose V and W are finite dimensional. Fix $v \in V$ and let

$$E = \{T \in L(V, W) : Tv = 0\}$$

- (a) Show that E is a subspace of L(V, W).
- (b) What is E in the case v = 0? Assuming $v \neq 0$, use the rank-nullity theorem to compute the dimension of E?

Solution.

Problem 5 (Axler 3.B.7). Suppose V and W are finite dimensional and $2 \leq \dim V \leq \dim W$. Show that $X = \{T \in L(V, W) : T \text{ is not injective}\}$ is not a subspace of L(V, W).

Solution.

Problem 6 (Axler 3.B.30). Suppose that $S, T : V \to F$ are linear maps so that ker $S = \ker T$. Prove that there exists a constant $c \in F$ so that T = cS.

Solution.

3 For Charlie

Problem 7. If V is a vector space and $W \subset V$ is a subspace, the quotient space V/W is defined as the set of equivalence classes of V with respect to the equivalence relation $v_1 \sim v_2$ if $v_1 - v_2 \in W$. As usual, we denote the equivalence class of $v \in V$ by [v]. In this exercise, you'll show that V/W is a vector space.

(a) Show that the addition and scalar multiplications defined by

$$[v_1] + [v_2] = [v_1 + v_2]$$
 and $a[v] = [av]$

are well-defined on V/W.

(b) Convince yourself that the addition on V/W is associative and commutative. What is the additive identity? What is the additive inverse of [v]? Convince yourself that scalar multiplication is associative, distributive, and $1 \cdot [v] = [v]$ for every v.

Solution.

Problem 8. Consider $V = \text{Poly}_4(\mathbb{C})$ and let $U = \ker f$, where $f : V \to \mathbb{C}$ is defined as f(p) = p(i). Which of the following vectors are equal in V/U?

[0],
$$[x+i]$$
, $[x^4+2x^2+x+1+i]$, $[x^2+1]$, $[x]$.

Solution.

Problem 9. Suppose $U \subset V$ is a subspace such that V/U is finite dimensional. Prove that V is isomorphic to $U \times (V/U)$. (Here $U \times (V/U)$ is the product vector space with addition and scalar multiplication defined coordinate-wise. Hint: to show they are isomorphic, you need to define a map $f: V \to U \times (V/U)$ and prove that it is a linear isomorphism.)

Solution.

4 For Ellen

Problem 10 (Axler 3.E.14). Consider $U = \{(x_1, x_2, \ldots) \in F^{\infty} : x_j \neq 0 \text{ for only finitely many } j\}.$

- (a) Show that U is a subspace of F^{∞} .
- (b) Prove that F^{∞}/U is infinite dimensional.

Solution.

Problem 11 (Axler 3.D.1). Suppose that $T: U \to V$ and $S: V \to W$ are invertible linear maps. Prove that $ST: U \to W$ is invertible with inverse $(ST)^{-1} = T^{-1}S^{-1}$.

Solution.

Problem 12 (Axler 3.D.19). Let $V = \text{Poly}(\mathbb{R})$. Suppose that $T: V \to V$ is injective and deg $Tp \leq \deg p$ for every nonzero polynomial $p \in V$.

- (a) Prove that T is surjective.
- (b) Prove that deg Tp = deg p for every nonzero $p \in V$.

Solution.