Homework 3

Math 25a

Due September 20, 2017

Topics covered: vector subspaces, span and linear independence, finite dimensionality

Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B.4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Michele

Problem 1 (Axler 1.C.10). Show that if U_1 and U_2 are subspaces of V are subspaces, then $U_1 \cap U_2$ is also a subspace of V.

Solution.

Problem 2 (Axler 1.C.1). Let F be a field. For each of the following subsets of F^3 , determine whether it is a subspace.

- (a) $U_1 = \{(x_1, x_2, x_3) \in F^3 : x_1 + 2x_2 + 3x_3 = 0\};$
- (b) $U_2 = \{(x_1, x_2, x_3) \in F^3 : x_1 + 2x_2 + 3x_3 = 4\};$
- (c) $U_3 = \{(x_1, x_2, x_3) \in F^3 : x_1 x_2 x_3 = 0\};$
- (d) $U_4 = \{(x_1, x_2, x_3) \in F^3 : x_1 = 5x_3\}.$

Solution.

- **Problem 3** (Axler 1.C.7-8). (a) Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under addition and taking additive inverses, but U is not a subspace of \mathbb{R}^2 .
 - (b) Give an example of a nonempty subset $U \subset \mathbb{R}^2$ such that U is closed under scalar multiplication, but U is not a subspace of \mathbb{R}^2 .

Solution.

2 For Ellen

Problem 4 (Axler 1.C.24). Let V be the vector space of all functions $f : \mathbb{R} \to \mathbb{R}$. A function $f : \mathbb{R} \to \mathbb{R}$ is called even if it satisfies f(-x) = f(x) and odd if it satisfies f(-x) = -f(x). Let U_e be the subset of even functions and U_o be the subset of odd functions.

- (a) Show U_e and U_o are subspaces of V.
- (b) Show $V = U_e \oplus U_o$.

Solution.

Problem 5 (Axler 1.9). Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.

Solution.

Problem 6 (c.f. Axler 1.C.9). Let V be the vector space of all functions $f : \mathbb{R} \to \mathbb{R}$. A function $f : \mathbb{R} \to \mathbb{R}$ is called periodic with period p if f(x+p) = f(x) for all $x \in \mathbb{R}$. For example, for $a \neq 0$, the function $f(x) = \sin(ax)$ is periodic with period $2\pi/a$. Let $V_p \subset V$ be the subset of functions with period p. Note that $V_0 = V$.

- (a) Fix $p \neq 0$. Is V_p a subspace of V?
- (b) Is $\bigcup_{p \in \mathbb{Q} \setminus \{0\}} V_p$ a subspace of V?
- (c) Is $\bigcup_{p \in \mathbb{R} \setminus \{0\}} V_p$ a subspace of V?

In each case, prove or give a counterexample.

Solution.

3 For Natalia

Problem 7. Consider the vector space $V = \mathbb{R}^2$.

- (a) Verify directly that (1,5) and (2,1) are linearly independent in V (set up a system of linear equations and solve).
- (b) Show that (1,5) and (2,1) span in V by showing that (1,0) and (0,1) belong to the span of (1,5) and (2,1).

Solution.

Problem 8 (c.f. Axler 2.A.1 and 2.A.6). Let v_1, \ldots, v_n be vectors in V.

(a) Prove that if (v_1, \ldots, v_n) spans V, then so does

 $(v_1 - v_2, v_2 - v_3, \dots, v_{n-1} - v_n, v_n).$

(b) Prove that if (v_1, \ldots, v_n) is linearly independent in V, then so is

$$(v_1 - v_2, v_2 - v_3, \dots, v_{n-1} - v_n, v_n).$$

Solution.

Problem 9 (Axler 2.A.10). Suppose that (v_1, \ldots, v_n) is linearly independent and $w \in V$. Prove that if $(v_1 + w, \ldots, v_n + w)$ is linearly dependent, then $w \in span(v_1, \ldots, v_n)$.

Solution.

4 For Charlie

Problem 10 (Axler 2.A.5). Let V be a vector space over \mathbb{C} .

- (a) Show that V is also a vector space over \mathbb{R} . Show that if V is finite dimensional over \mathbb{C} , then it is finite dimensional over \mathbb{R} .
- (b) Show that for $V = \mathbb{C}$, the vectors 1 + i and 1 i are linearly independent over \mathbb{R} , but linearly dependent over \mathbb{C} .

Solution.

Problem 11 (Axler 2.A.14). Prove that V is infinite dimensional if and only if there is a sequence v_1, v_2, \ldots of vectors in V such that (v_1, \ldots, v_n) is linearly independent for every integer n.

Solution.

Problem 12. Let S be a set and let F be a field. Prove that the vector space $V = \{f : S \to F\}$ of all maps from S to F is finite dimensional if and only if S is finite.

Solution.